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In the paper the martingale convergence theorem is proved for
sequences of F-observables in F-quantum spaces (see [11]). Let ﬁs
recall that for compatible observables it was done in [10]}, for
observables in quantum logics in (61,[1] and {7]1. The main tool
is a representation of F-observables by random variables given by
piasecki [9] and pvuredenskij [2] and a variant of the Radon-Ni-

kodym theorem (see [41).

PRELIMINARIES

We recall that a fuzzy measurable space is a couple (Q, M,
where € is a nonemty set, and M < [0,1]0 is a soft fuzzy e¢-algeb-
ra, i.e.

(i) if 1(@) =1 for any @€ Q, then l1eM;

(ii) a€M implies a'L i=l-aeM

(iii) nLJNan := ns;‘xs a, € M whenever (anz‘N:M;

(iv) if 1/2(w) = 1/2 for any @ € 0, then 1/2 & M.
The fuzzy meet, N, is defined, according to Zadeh [12]., via
HQNan =}2£ a, . if (aﬂ).m;M' and IQNan belongs to M. The system
M with respect to N and U is a pounded, distributive , de Morgan
6-lattice with a unary operation 1: M- M, aroaL, satisfying
(i) (a'L)'L=a for any a€M; (ii) if asb, a,beM then bJ's a'L.
By an F-observable of (Q,M) we mean a mapping x: 8(R) - M (B(R)
is the Borel e-algebra of the real line R) such that

(1) x(E5) =1-x(E), E€3B(R),

(i1) x(ngNEn) =nLeJNX(En) ' (E_Z‘N:.B(R) '

-
where E- denotes the set-theoretical complement of E in R.

For example, let a€M be given, then the mapping x_: 3B(R)-M
a



defined via
ana if 0,12 E

. a if 0 € E, 1 ¢ E (0.1)
a - if 0O E, 1 € E

au a if 0,1 € E,
E€B(R), is an F-observable of (Q,M), called the indicator
observable of a fuzzy set aeM.
A P-measure is any mapping m: M- [0,1] such that m(au a) =
=1 for any aeM; m(U a)= 3 mla,) whenever (a) <M,

neN n &N T pen
a, sl—aJ, for i= j.

By a fuzzy probability space we mean any triplet (Q,M,m),
where 1 is a nonvoid set, M is a soft fuzzy 6-algebra and m is
a P-measure.

We say that a fuzzy set a€M is a W-empty set (W-universum)
if a<1/2 (a21/2). We denote by W, (M and W, (M) the set of all
W-empty sets and W-universes, respectively, from M.

Two fuzzy sets a and b from M are W-separated and we write a.L.b
if a<b .

According to [9] we define X(M) as the set of all subsets
AcQ such that there is a fuzzy set a€M with

{a>1/2YcAc{a=1/2}, (0.2)
where {a>1/2)={we); alw) > 1/2}, similarly for {(az21/2}.

The following result is hold in ([3]1,[9]):

Theorem 0.1. Let (Q,M) be a fuzzy measurable space. Then X(M)
is a 6-algebra of subsets of the set . If m 1is a probability
measure on M, then the function P=P_: X(M - [0,1] defined via

P _(A) =m(a), AeX(M, (0.3)
where A and a satisfy (0.2), is a P-measure on X{(M) with

P ({a=1/2}) =0 for any aeM. (0.4)
Moreover, if m,n are P-measures, m=n, then P =P .

Conversely, let P be any probability measure on X(M) with (0.4),
then the mapping m,: M- [0,1] defined via

m,(a) = P(A), a€M, (0.5)



where a and A fulfil (0.2), is a P-measure on M.

If P=gQ, then m, =m,. In addition, m=m, and P=P_ .
I 4

In subsequent paragraphs we shall often use the following

theorem.

Theorem 0.2. (Representation Theorem (see [2])).

Let x be an F-observable of a fuzzy measurable space (Q,M). Then
there is a X(M)-measurable, real-valued function f on Q such that
(x(E) >1/2)c £ ' (B) «{x(E) 21/2} (0.6)
for any E€38(R). If g is any X(M) -measurable real-valued

function on Q with (0.6), then

{we: () =glw) yc{x(B) =1/2}. (0.7)
Conversely, let f: 0-R be any X(M)-measurable function. Then
there is an F-observable x with (0.6). If y is any F-observable
of (O,M with (0.6), then

x(E) ny(E°) e W, (M) (0.8)
for any E€3(R).

We will write x~ f if x is an F-observable of (Q,M) and f is
a X(M)-measurable function from Q into R such that (0.6) holds.

The sum of any two observaybles X and y is introduced 1in [5]
as a unique F-observable x+ y such that

B ,,(t)= U (B (r)nB (t-r)), (0.9)

reg
teR, where B, (r) =x((-w,r)), reaq.

Let h be Borel function then heox 1is an F-observable of
(Q,M defined via hox: Em»x(h '(E)), Ee€®(R). The product of
two F-observables x and y, x.y, is defined as follows

x.y=Ux+yn-%x -y /2. (0.10)
The mean value of an F-observable x in a P-measure m we mean the

expression E(x) :=] tdm (t), where m : Em m(x(E)), Ec 2(R),
R

is a probability measure on B8(R), if the integral exists and is
finite.

We denote by &, (m) = {x: B3(R) - M, x is an F-observable such that
[ 1x|dm< o }.



The indefinite integral, [ xdm, aeM is defined via [xdm:=

:=E(x.x.), a€M, where x, is declared in (0.1).
We will often use the following lemmas ( see [2]).

Lemmna 0.3. Let x~ f, y~g and let h be any Borel function.
Then

(i) x+y~f+g;
(ii) hox~ho [;
(iii) x. y~F. g;
(iv) 41if £20, then x([0,0)) = x(R).

Lemma 0.4. Let x~f, m be a P-measure on M and let P, be a
probability measure on X(M) defined via (0.3). Let aeM and
AeX(M) be related through (0.2). Then

(1)  m(x(E)) =P (£ ' (E)), E€3(R);

(ii) x,~I,, where I, is the indicator of A;

(iii) {xdm={ £dP .

Let us remark, that the mapping n: M- R such that n(a) =den
[ ]

is the signed measure on M, and m(a) =0 implies n(a) =0,

Indeed, n(a) = [ xdm=[ fdP, =0 because P, (A) =mla) =0.
] A

CONDITIONAL EXPECTATION
Troughout the paper we shall assume that (Q,M be a fuzzy

measurable space, where ) is a nonempty set and M is a soft fuzzy

6-algebra.

Definition 1.1. Let x, y be F-observables. We will say that
X, ¥ are equal almost everywhere with respect to a P-measure m
(x=ya.e.[m]) if m((x-y) ({0})) =1.
We will say, that x is less or equal to y almost everywhere with
respect to a P-measure m ( x<ya.e.[m]) if

m((y-x)([0,0))) =1.

~
B



Lesmma 1.2. Let x~ fF, jr~g. Then
1. x=ya.e.[m] if and only if f=ga.e.[P.];
2. x2ya.ke.[m] if and only if f2ga.e.[P.].

Proof. 1. Because x~f, y~g implies x-y~f-g (Lemma 0.3),
i.e. {(x-y)(B)>1/2}c(f-g) " (B) = {(x-y) (F) 21/2},
for every E€8(R), the equality
m((x- Y (E)) =P ((£- ) " (B),
for every E€ 8(R) is fulfiled (Th.0.1). Since
P UE-9 " ({0})) =1-P ((£f-g) " (R-(0}))
the previous assertion 1 is proved.
Indeed x=ya.e.[m] is equivalent with the equality
m(x-y)({0}) =1
and equality
P Uf-g)" " (R-{0})) =P, ({w€N: flw) =g(w))}) =0
is equivalent with the equality f=ga.e.[P_].
2. The equality
m((x-y) (E)) =P ((£-g) ' (E)
for every E€B8(R) implies
m((x-y) ([0,0))) =P ((£-g) ' ([0,00))),
and
1=m((x-y) ([0,00))) =P ((£-g) " ([0,0)))
is equivalent with x2ya.e.[m] and f2ga.e.[P ] respectively.

Q.E.D.

Lesnma 1.3. Let M, <M be a fuzzy soft sube-algebra. Let x be
an integrable F-observable on M. Then there exists an

F-observable y on M, such that fydm=fxdm for every ae€¥,.
a a

I1f [ xdm=[ zdm for another an F-obsrvable z on M,, then
L a2

y=za.e.[m/M,].

Proof. Put n(a)=fxdm for every a€M,. The mapping n is a

signed measure on Mo and m(a) =0 implies n(a) =0. According to

the Radon - Nikodym theorem (see [4]) then there exists an



F-observable y on M,, such that n(a) = I ydm for every aeM,.
a

If n(a) = [ zdm for another an F-observable z, then
a

y=za.e.[m/M)]. Q.E.D.

Definition 1.4 Let x be an integrable F-observable on M,
M,<MDbe a fuzzy soft sube-algebra. Then by a version of
conditional expectation of the F-observable x for M, (E(x/M)))

we understand any F-observable y on M, with the property

Iydm= f xdm for every a€eM,.

Especially, if z is an F-observable on M, then 2z(B8(R)) is a
sub-6-algebra and y=E(x/z(8(R))) is called a version of
conditional expectation of the F-observable x with respect to the

F-observable z. It is denoted by E(x/2z).

MARTINGALS AND SUBMARTINGALS
In this part we introduce the definition of submartingals and

martingals.

Defimition 2.1. Let (0,M.m) be an F-probability space, ' '(M,)

n &N

be a sequence of fuzzy soft é-algebras of M, (x.) be a sequence
2 N
of F-observables. Then the sequence ((xn, M.)) will be called a

2 eN
submartingal if it holds:

1. Mnc:Mn”cM for all n=1, 2, ...;

2. x, be the F-observable on the F-measurable space (Q,M),
such that xn(E) €M for every E€B8(R), n=1,2, ...;

3. x, SE(X.“/MH) a.e.[m], n=1,2, ...

A submartingal will be called a martingal, if
4. x, = E(x /M) a.e.[m}, n=1,2,... .

B+l

Lemma 2.2. Let ((x., M)) be a submartingal ( martingal )
2 aN '
on F~probability space (Q,M,m). Then ((£, ,X(M))) N where
[N 3
X, ~f,, n=1,2, ..., 1is a submartingal (martingal) on the

probability space (Q,X(A),P.).

Proof. 1. According to the definition of X(M) the following 1is



\

fulfiled: if M , M, are soft fuzzy e-algebras of M, M cM cM,
then X(M,) cX(M,) =X(M) .

Indeed, if AEX(MI) then there is a fuzzy set a€M, and also
aeM, such that (0.2) is hold. Therefore AeX(M,).

2. For every F-observable x on (Q,M) there is an X(M)-measu-

rable, real-valued function fon Q, x~f (see Th. 0.2).

3. If XRSE(x“l/Mn)a.e.[m], n=1,2,..., f,, g, are the
X(M) measurable, real-valued functions, x, ~f ., E(x ,, /M.) ~ g,
then f <g, a.e.[P_] ( see Lemma 1.2). 0.E.D.

Definition 2.3. We say that a sequence (xn) of F-observab-

neN
les on (Q,M) converges to an F-observable x on (Q,M) almost

everywhere in an F-state m, if

[+ [+ 4]
m(J N (X-X')(-C,C)) =1, for every €>0.
k=1 n=zk

Lemma 2.4. Let x, x be the observables on (Q,M, let £, £

be X(M) -measurable functions on 1, such that x~f, X, ~fn, for
any nz1. A sequence (x,) converges to x almost everywhere in
o @N
an F-state m, if and only if a sequence '(fn) converges to f
neN

almost everywhere in the measure P_.

Proof. We remark that the following assertion is fulfiled.
If (a,) is a sequence from M, then
naN

(U a >1/2y= U {a, >1/2}, { U a,21/2}> U {a, 21/2},
n&N ne&N neaN

s &N

&N

{Na>1/2yc N {(a, >1/2}, { N a, 21/2}y= N {a, 21/2}.
n&N 2a&N 2 &N

Using Lemma 0.3 we have x—xn~f-— fn, i.e.
((x-x)(E)>1/2ys (£- £,) " (B) ={(x-x,) (E) 21/2}
for every E€38(R), n=1,2, ... .

By the previous assertion

0 00
{N (x-x)(E) >1/2}c N {(x-x,)(E) >1/2}<
a=xk n=k
o0 -1 L
s NI(r-f£f) (B0s N {(x-x)(E) 21/2}=
=k =k

00
={ N (x-x)(E) 21/2},
n=k

and so



{U ﬂ (x-x,) (E) >1/2} = U { ﬂ (x-x,)(E) >1/2}c

k=1 n=k

k=1 B=k

00 [+ ]
< U ﬂ (f- f) "Be UL N (x-x,)(E) 21/2 } <=
k=1 n=k

<{ U ﬂ (x- x,)(E) 21/2 }

k=1 n=k
for every Ee B8(R).
By the definition of P,

U n(x x)(ec))—P(U n<f £)"!

k=1 n=k

([-€,€]))

for every €>0. Q.E.D.

Theorem 2.5. Let ((x, M )) be a submartingal, supE(|x |) <
2 pen n eN B
<o, then there is an F-observable x: 3(R) - M,, where M, is the
o0
smallest fuzzy soft 6-algebra containing the union UI M ., and x,
nx

converges to xa.e.[m].

Proof. From Lemma 2.1, the sequence ((f, ,X(M, ))) N is a submar-
ne

tingal on the probability space (Q,X(M),P ), x, ~f, . neN.

The condition supE(|x, |) <o implies SupE(|f, |) <o. Then corres-
n &N 2 &N

poding with the classical theory, for example see [8], then

there is a §,-measurable real-valued function f (S, =6( U X(M,))

is the smallest 6-algebra containing the union U M ), such that

2 &N
f. converges to fa.e.[P_]. We note, that the function f is an

S,-measurable iff £l (| €S, for every E€3(R).
Let now Ae.L‘JNX(Mn). Then there is k&N, such that AeX(M),
and so then there is ae€M,, such that
{a>1/2YcAc{a=21/2) (a~A).
0

Therefore we have: for every A€ U X(M.) there 1is aeM such
na&N

that a~ A.
Because X(Mo) ={ AcQ); such that there is aeM,: a~A)}, is
X(M,)> U X(M, ), too.

neN

So, the function f is J((Mo)—measurable and by Th, 0.2 there is an
F-observable x, x: 8(R) - M, such that x~f. By Lemma 2.4 X

n
convergences to xa.e.[m].
Q‘E.D.
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