MARTINGALE CONVERGENCE THEOREM IN F-QUANTUM SPACES

František Kôpka and Ferdinand Chovanec Technical University, Liptovský Mikuláš,

Czecho - Slovakia

In the paper the martingale convergence theorem is proved for sequences of F-observables in F-quantum spaces (see [11]). Let us recall that for compatible observables it was done in [10], for observables in quantum logics in [6],[1] and [7]. The main tool is a representation of F-observables by random variables given by Piasecki [9] and Dvurečenskij [2] and a variant of the Radon-Ni-kodym theorem (see [4]).

PRELIMINARIES

We recall that a fuzzy measurable space is a couple (Ω, M) , where Ω is a nonemty set, and $M \subseteq [0,1]^{\Omega}$ is a soft fuzzy σ -algebra, i.e.

- (i) if $1(\omega) = 1$ for any $\omega \in \Omega$, then $1 \in M$;
- (ii) $a \in M$ implies $a^{\perp} := 1 a \in M$;
- (iii) $\bigcup_{n \in \mathbb{N}} a_n := \sup_{n \in \mathbb{N}} a_n \in M \text{ whenever } (a_n) \subseteq M;$
- (iv) if $1/2(\omega) = 1/2$ for any $\omega \in \Omega$, then $1/2 \notin M$.

The fuzzy meet, \cap , is defined, according to Zadeh [12], via $\bigcap_{n \in \mathbb{N}} a_n = \inf_{n \in \mathbb{N}} a_n$, if $(a_n)_{n \in \mathbb{N}} \subseteq M$, and $\bigcap_{n \in \mathbb{N}} a_n$ belongs to M. The system M with respect to \bigcap and \bigcup is a bounded, distributive, de Morgan σ -lattice with a unary operation $\bot: M \to M$, $a \mapsto a^{\bot}$, satisfying (i) $(a^{\bot})^{\bot} = a$ for any $a \in M$; (ii) if $a \le b$, $a, b \in M$ then $b^{\bot} \le a^{\bot}$.

By an F-observable of (Ω, M) we mean a mapping $x: \mathcal{B}(\mathbb{R}) \to M$ $(\mathcal{B}(\mathbb{R}))$ is the Borel σ -algebra of the real line \mathbb{R}) such that

- (i) $x(E^C) = 1 x(E), E \in \mathcal{B}(\mathbb{R}),$
- (ii) $x(\bigcup_{n\in\mathbb{N}}E_n)=\bigcup_{n\in\mathbb{N}}x(E_n)$, $(E_n)\subseteq \mathfrak{B}(\mathbb{R})$, where E^C denotes the set-theoretical complement of E in \mathbb{R} . For example, let $a\in M$ be given, then the mapping $x_a\colon \mathfrak{B}(\mathbb{R})\to M$

defined via

$$a \cap a^{\perp} \text{ if } 0, 1 \notin E$$

$$x_{a}(E) = \begin{cases} a^{\perp} & \text{if } 0 \in E, 1 \notin E \\ a & \text{if } 0 \notin E, 1 \in E \\ a \cup a^{\perp} & \text{if } 0, 1 \in E, \end{cases}$$

$$(0.1)$$

 $E \in \mathcal{B}(\mathbb{R})$, is an F-observable of (Ω, M) , called the indicator observable of a fuzzy set $a \in M$.

A P-measure is any mapping $m: M \to [0,1]$ such that $m(a \cup a^{\perp}) = 1$ for any $a \in M$; $m(\bigcup_{n \in \mathbb{N}} a_n) = \sum_{n \in \mathbb{N}} m(a_n)$ whenever $(a_n) \subseteq M$, $a_i \le 1 - a_i$, for $i \ne j$.

By a fuzzy probability space we mean any triplet (Ω, M, m) , where Ω is a nonvoid set, M is a soft fuzzy σ -algebra and m is a P-measure.

We say that a fuzzy set $a \in M$ is a W-empty set (W-universum) if $a \le 1/2$ ($a \ge 1/2$). We denote by $W_o(M)$ and $W_I(M)$ the set of all W-empty sets and W-universes, respectively, from M.

Two fuzzy sets a and b from M are W-separated and we write $a \perp b$ if $a \leq b^{\perp}$.

According to [9] we define $\Re(M)$ as the set of all subsets $A \subset \Omega$ such that there is a fuzzy set $a \in M$ with

$$\{a > 1/2\} \subset A \subset \{a \ge 1/2\},\tag{0.2}$$

where $\{a > 1/2\} = \{\omega \in \Omega; \ a(\omega) > 1/2\}$, similarly for $\{a \ge 1/2\}$. The following result is hold in ([3],[9]):

Theorem 0.1. Let (Ω, M) be a fuzzy measurable space. Then $\mathcal{K}(M)$ is a σ -algebra of subsets of the set Ω . If m is a probability measure on M, then the function $P = P_m$: $\mathcal{K}(M) \to [0,1]$ defined via

$$P_{m}(A) = m(a), A \in \mathcal{K}(M),$$
 (0.3)

where A and a satisfy (0.2), is a P-measure on K(M) with

$$P_{a}(\{a=1/2\})=0$$
 for any $a \in M$. (0.4)

Moreover, if m, n are P-measures, $m \neq n$, then $P_m \neq P_n$.

Conversely, let P be any probability measure on $\mathcal{K}(M)$ with (0.4), then the mapping $m_p: M \to [0,1]$ defined via

$$m_{p}(a) = P(A), a \in M,$$
 (0.5)

where a and A fulfil (0.2), is a P-measure on M. If $P \neq Q$, then $m_p \neq m_Q$. In addition, $m = m_p$ and $P = P_{m_p}$.

In subsequent paragraphs we shall often use the following theorem.

Theorem 0.2. (Representation Theorem (see [2])).

Let x be an F-observable of a fuzzy measurable space (Ω, M) . Then there is a K(M)-measurable, real-valued function f on Ω such that

$$\{x(E) > 1/2\} \subset f^{-1}(E) \subset \{x(E) \ge 1/2\}$$
 (0.6)

for any $E \in \mathcal{B}(\mathbb{R})$. If g is any $\mathcal{K}(M)$ -measurable real-valued function on Ω with (0.6), then

$$\{\omega \in \Omega: \ f(\omega) \neq g(\omega)\} \subset \{x(\emptyset) = 1/2\}. \tag{0.7}$$

Conversely, let $f: \Omega \to \mathbb{R}$ be any $\mathfrak{K}(M)$ -measurable function. Then there is an F-observable x with (0.6). If y is any F-observable of (Ω, M) with (0.6), then

$$x(E) \cap y(E^c) \in W_o(M) \tag{0.8}$$

for any $E \in \mathcal{B}(\mathbb{R})$.

 $[x]dm<\infty$.

We will write $x \sim f$ if x is an F-observable of (Ω, M) and f is a $\mathcal{K}(M)$ -measurable function from Ω into \mathbb{R} such that (0.6) holds.

The sum of any two observables x and y is introduced in [5] as a unique F-observable x+y such that

$$B_{x+y}(t) = \bigcup_{r=0}^{\infty} (B_x(r) \cap B_y(t-r)), \qquad (0.9)$$

 $t \in \mathbb{R}$, where $B_{\nu}(r) = x((-\infty, r))$, $r \in \mathbb{Q}$.

Let h be Borel function then $h \circ x$ is an F-observable of (Ω, M) defined via $h \circ x$: $E \mapsto x(h^{-1}(E))$, $E \in \mathcal{B}(\mathbb{R})$. The product of two F-observables x and y, $x \cdot y$, is defined as follows

$$x \cdot y = ((x + y)^2 - x^2 - y^2) / 2.$$
 (0.10)

The mean value of an F-observable x in a P-measure m we mean the expression $E(x) := \int\limits_R t \,\mathrm{d} m_x(t)$, where $m_x : E \mapsto m(x(E))$, $E \in \mathcal{B}(\mathbb{R})$, is a probability measure on $\mathcal{B}(\mathbb{R})$, if the integral exists and is

We denote by $\mathcal{Z}_1(m) = \{x \colon \mathcal{B}(\mathbb{R}) \to M, x \text{ is an F-observable such that}$

The indefinite integral, $\int_a x \, dm$, $a \in M$ is defined via $\int_a x \, dm := E(x \cdot x_a)$, $a \in M$, where x_a is declared in (0.1).

We will often use the following lemmas (see [2]).

Lemma 0.3. Let $x \sim f$, $y \sim g$ and let h be any Borel function. Then

(i) $x+y\sim f+g$;

4

- (ii) $h \circ x \sim h \circ f$;
- (iii) $x \cdot y \sim f \cdot g$;
- (iv) if $f \ge 0$, then $x([0,\infty)) = x(\mathbb{R})$.

Lemma 0.4. Let $x \sim f$, m be a P-measure on M and let P_m be a probability measure on $\mathcal{K}(M)$ defined via (0.3). Let $a \in M$ and $A \in \mathcal{K}(M)$ be related through (0.2). Then

- (i) $m(x(E)) = P_m(f^{-1}(E)), E \in \mathcal{B}(\mathbb{R});$
- (ii) $x_{\bullet} \sim I_{A}$, where I_{A} is the indicator of A;
- (iiii) $\int_{a} x \, dm = \int_{a} f \, dP_{m}.$

Let us remark, that the mapping $n: M \to \mathbb{R}$ such that $n(a) = \int_a x \, dm$ is the signed measure on M, and m(a) = 0 implies n(a) = 0. Indeed, $n(a) = \int_a x \, dm = \int_a f \, dP_m = 0$ because $P_m(A) = m(a) = 0$.

CONDITIONAL EXPECTATION

Troughout the paper we shall assume that (Ω,M) be a fuzzy measurable space, where Ω is a nonempty set and M is a soft fuzzy σ -algebra.

Definition 1.1. Let x, y be F-observables. We will say that x, y are equal almost everywhere with respect to a P-measure m (x = y a.e. [m]) if $m((x - y)(\{0\})) = 1$.

We will say, that x is less or equal to y almost everywhere with respect to a P-measure m ($x \le y$ a.e. [m]) if

$$m((y-x)([0,\infty))) = 1.$$

Lemma 1.2. Let $x \sim f$, $y \sim g$. Then

- 1. x = y a.e. [m] if and only if f = g a.e. $[P_m]$;
- 2. $x \ge y$ a.e. [m] if and only if $f \ge g$ a.e. $[P_m]$.

Proof. 1. Because $x \sim f$, $y \sim g$ implies $x - y \sim f - g$ (Lemma 0.3),

i.e.
$$\{(x-y)(E) > 1/2\} \subset (f-g)^{-1}(E) \subset \{(x-y)(E) \ge 1/2\},$$

for every $E \in \mathcal{B}(\mathbb{R})$, the equality

$$m((x-y)(E)) = P_m((f-g)^{-1}(E))$$
,

for every $E \in \mathcal{B}(\mathbb{R})$ is fulfiled (Th.0.1). Since

$$P_{m}((f-g)^{-1}(\{0\})) = 1 - P_{m}((f-g)^{-1}(R-\{0\}))$$

the previous assertion 1 is proved.

Indeed x = y a.e. [m] is equivalent with the equality

$$m(x-y)(\{0\})=1$$

and equality

$$P_{m}((f-g)^{-1}(\mathbf{R}-\{0\}))=P_{m}(\{\omega\in\Omega: f(\omega)\neq g(\omega)\})=0$$

is equivalent with the equality f = g a.e. $[P_m]$.

2. The equality

$$m((x-y)(E)) = P_m((f-g)^{-1}(E))$$

for every $E \in \mathcal{B}(\mathbb{R})$ implies

$$m((x-y)([0,\infty))) = P_m((f-g)^{-1}([0,\infty))),$$

and

$$1 = m((x - y)([0, \infty))) = P_{m}((f - g)^{-1}([0, \infty)))$$

is equivalent with $x \ge y$ a.e. [m] and $f \ge g$ a.e. [P] respectively.

Q.E.D.

Lemma 1.3. Let $M_o \subset M$ be a fuzzy soft subs-algebra. Let x be an integrable F-observable on M. Then there exists an F-observable y on M_o such that $\int y \, \mathrm{d} m = \int x \, \mathrm{d} m$ for every $a \in M_o$.

If
$$\int_a x dm = \int_a z dm$$
 for another an F-obsrvable z on M_o , then $y = z$ a.e. $[m/M_o]$.

Proof. Put $n(a) = \int_a x \, dm$ for every $a \in M_o$. The mapping n is a signed measure on M_o and m(a) = 0 implies n(a) = 0. According to the Radon - Nikodym theorem (see [4]) then there exists an

F-observable y on M_o , such that $n(a) = \int_a y dm$ for every $a \in M_o$. If $n(a) = \int_a z dm$ for another an F-observable z, then

$$y = z$$
 a.e. $[m/M_o]$.

6

Q.E.D.

Definition 1.4 Let x be an integrable F-observable on M, $M_o \subset M$ be a fuzzy soft subs-algebra. Then by a version of conditional expectation of the F-observable x for M_o ($E(x/M_o)$) we understand any F-observable y on M_o with the property

$$\int y \, \mathrm{d} m = \int x \, \mathrm{d} m \text{ for every } a \in M_o.$$

Especially, if z is an F-observable on M, then z(S(R)) is a sub-s-algebra and y = E(x/z(S(R))) is called a version of conditional expectation of the F-observable x with respect to the F-observable z. It is denoted by E(x/z).

MARTINGALS AND SUBMARTINGALS

In this part we introduce the definition of submartingals and martingals.

Definition 2.1. Let (Ω, M, m) be an F-probability space, $(M_n)_{n \in \mathbb{N}}$ be a sequence of fuzzy soft σ -algebras of M, $(x_n)_{n \in \mathbb{N}}$ be a sequence of F-observables. Then the sequence $((x_n, M_n))_{n \in \mathbb{N}}$ will be called a submartingal if it holds:

- 1. $M_n \subset M_{n+1} \subset M$ for all $n=1, 2, \ldots$;
- 2. x_n be the F-observable on the F-measurable space (Ω, M) , such that $x_n(E) \in M_n$ for every $E \in \mathcal{B}(\mathbb{R})$, $n=1,2,\ldots$;
 - 3. $x_n \le E(x_{n+1}/M_n)$ a.e. [m], $n=1, 2, \ldots$.

A submartingal will be called a martingal, if

4.
$$X_n = E(X_{n+1}/M_n)$$
 a.e. $[m]$, $n = 1, 2, ...$

Lemma 2.2. Let $((x_n, M_n))$ be a submartingal (martingal) on F-probability space (Ω, M, m) . Then $((f_n, \mathcal{K}(M_n)))$, where $x_n \sim f_n$, $n=1,2,\ldots$, is a submartingal (martingal) on the probability space $(\Omega, \mathcal{K}(M), P_n)$.

Proof. 1. According to the definition of $\Re(M)$ the following is

fulfiled: if M_1 , M_2 are soft fuzzy e-algebras of M, $M_1 \subset M_2 \subset M$, then $\Re(M_1) \subset \Re(M_2) \subset \Re(M)$.

Indeed, if $A \in \mathcal{K}(M_1)$ then there is a fuzzy set $a \in M_1$ and also $a \in M_2$ such that (0.2) is hold. Therefore $A \in \mathcal{K}(M_2)$.

- 2. For every F-observable x on (Ω, M) there is an $\mathcal{K}(M)$ -measurable, real-valued function f on Ω , $x \sim f$ (see Th. 0.2).
- 3. If $x_n \leq E(x_{n+1}/M_n)$ a.e. [m], $n=1,2,\ldots$, f_n , g_n are the $\mathfrak{K}(M)$ measurable, real-valued functions, $x_n \sim f_n$, $E(x_{n+1}/M_n) \sim g_n$, then $f_n \leq g_n$ a.e. $[P_m]$ (see Lemma 1.2).

Definition 2.3. We say that a sequence (x_n) of F-observables on (Ω, M) converges to an F-observable x on (Ω, M) almost everywhere in an F-state m, if

$$m(\bigcup_{k=1}^{\infty}\bigcap_{n=k}^{\infty}(x-x_n)(-\varepsilon,\varepsilon))=1$$
, for every $\varepsilon>0$.

Lemma 2.4. Let x, x_n be the observables on (Ω, M) , let f_n , f be K(M)-measurable functions on Ω , such that $x \sim f$, $x_n \sim f_n$, for any $n \geq 1$. A sequence (x_n) converges to x almost everywhere in an F-state m, if and only if a sequence (f_n) converges to f almost everywhere in the measure P_n .

Proof. We remark that the following assertion is fulfiled.

If (a_n) is a sequence from M, then

$$\{\bigcup_{n\in\mathbb{N}}a_n>1/2\}=\bigcup_{n\in\mathbb{N}}\{a_n>1/2\},\ \{\bigcup_{n\in\mathbb{N}}a_n\geq1/2\}\supset\bigcup_{n\in\mathbb{N}}\{a_n\geq1/2\},$$

$$\{\bigcap_{n\in\mathbb{N}}a_n>1/2\}\subset\bigcap_{n\in\mathbb{N}}\{a_n>1/2\},\ \{\bigcap_{n\in\mathbb{N}}a_n\geq1/2\}=\bigcap_{n\in\mathbb{N}}\{a_n\geq1/2\}.$$

Using Lemma 0.3 we have $x - x_n \sim f - f_n$, i.e.

$$\{(x-x_n)(E) > 1/2\} \subseteq (f-f_n)^{-1}(E) \subseteq \{(x-x_n)(E) \ge 1/2\}$$

for every $E \in \mathcal{B}(\mathbb{R})$, $n = 1, 2, \ldots$

By the previous assertion

$$\left\{ \bigcap_{n=k}^{\infty} (x - x_n) (E) > 1/2 \right\} \subseteq \bigcap_{n=k}^{\infty} \left\{ (x - x_n) (E) > 1/2 \right\} \subseteq$$

$$\subseteq \bigcap_{n=k}^{\infty} (f - f_n)^{-1} (E) \subseteq \bigcap_{n=k}^{\infty} \left\{ (x - x_n) (E) \ge 1/2 \right\} =$$

$$= \left\{ \bigcap_{n=k}^{\infty} (x - x_n) (E) \ge 1/2 \right\},$$

and so

$$\left\{ \bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} (x - x_n) (E) > 1/2 \right\} = \bigcup_{k=1}^{\infty} \left\{ \bigcap_{n=k}^{\infty} (x - x_n) (E) > 1/2 \right\} \subset$$

$$\subset \bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} (f - f_n)^{-1} (E) \subset \bigcup_{k=1}^{\infty} \left\{ \bigcap_{n=k}^{\infty} (x - x_n) (E) \ge 1/2 \right\} \subset$$

$$\subset \left\{ \bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} (x - x_n) (E) \ge 1/2 \right\}$$

for every $E \in \mathcal{B}(\mathbb{R})$.

9

By the definition of $P_{\underline{a}}$

$$m(\bigcup_{k=1}^{\infty}\bigcap_{n=k}^{\infty}(X-X_n)(-\varepsilon,\varepsilon))=P_m(\bigcup_{k=1}^{\infty}\bigcap_{n=k}^{\infty}(f-f_n)^{-1}([-\varepsilon,\varepsilon]))$$

for every $\varepsilon > 0$.

Q.E.D.

Theorem 2.5. Let $((x_n, M_n))$ be a submartingal, $\sup_{n \in \mathbb{N}} E(|x_n|) < \infty$, then there is an F-observable $x: \mathcal{B}(\mathbb{R}) \to M_0$, where M_0 is the smallest fuzzy soft σ -algebra containing the union $\bigcup_{n=1}^{\infty} M_n$, and X_n converges to x a.e. [m].

Proof. From Lemma 2.1, the sequence $((f_n, \Re(M_n)))$ is a submartingal on the probability space $(\Omega, \Re(M), P_n)$, $x_n \sim f_n$, $n \in \mathbb{N}$.

The condition $\sup_{n\in\mathbb{N}} E(|X_n|) < \infty$ implies $\sup_{n\in\mathbb{N}} E(|f_n|) < \infty$. Then correspoding with the classical theory, for example see [8], then there is a S_o -measurable real-valued function $f(S_o = \sigma(\bigcup_{n=1}^\infty \mathcal{K}(M_n)))$ is the smallest σ -algebra containing the union $\bigcup_{n\in\mathbb{N}} M_n$, such that f_n converges to f a.e. $[P_n]$. We note, that the function f is an S_o -measurable iff $f^{-1}(E) \in S_o$ for every $E \in \mathcal{B}(\mathbb{R})$.

Let now $A \in \bigcup_{n \in \mathbb{N}} \mathfrak{K}(M_n)$. Then there is $k \in \mathbb{N}$, such that $A \in \mathfrak{K}(M_k)$, and so then there is $a \in M_k$, such that

$$\{a>1/2\}\subset A\subset \{a\geq 1/2\}\ (a\sim A)$$
.

Therefore we have: for every $A \in \bigcup_{n \in \mathbb{N}} \mathfrak{X}(M_n)$ there is $a \in M_0$ such that $a \sim A$.

Because $\Re(M_o) = \{A \subset \Omega; \text{ such that there is } a \in M_o: a \sim A\}$, is $\Re(M_o) \supset \bigcup_{n \in \mathbb{N}} \Re(M_n)$, too.

So, the function f is $\Re(M_0)$ -measurable and by Th. 0.2 there is an F-observable x, x: $\Re(\mathbb{R}) \to M_0$, such that $x \sim f$. By Lemma 2.4 x_n convergences to x a.e. [m].

Q.E.D.

REFERENCES

- [1] BÁN, J.: Martingale convergence theorem in a regular space,
 Math. Slovaca 37 (1987) 313-322.
- [2] DVUREČENSKIJ, A.: On a representation of observables in fuzzy measurable spaces. Submitted.
- [3] DVUREČENSKIJ, A.: On existence of probability measures on fuzzy measurable spaces. Submitted.
- [4] DVUREČENSKIJ, A.: The Radon-Nikodym theorem for fuzzy probability spaces. Submitted for publication.
- [5] DVUREČENSKIJ, A., TIRPÁKOVÁ, A.: Sum of observables in fuzzy quantum spaces and convergence theorems. Submitted.
- [6] HARMAN, B., RIEČAN, B.: On the martingale convergence theorem in quantum theory. Trans. Ninth Prague Conf. Inf. Theory, Academia, Prague, 1983, 275-280.
- [7] NANÁSIOVÁ, O.: Martingals and submartingals on quantum logic. Submitted to Demonstratio Mathematicae.
- [8] NEUBRUNN, T., RIEČAN, B.: Miera a integrál. Veda, Bratislava 1981.
- [9] Piasecki, K.: Probability of fuzzy events defined as denumerable additivity measure. Fuzzy Sets and Systems 17, 1985, 271-284.
- [10] RIEČAN, B.: On martingals in general ordered systems. Proc. Intern. Sem. on Fuzzy Sets Theory. Poznań 1988.
- [11] RIEČAN, B.: A new approach to some notions of statistical quantum mechanics. BUSEFAL 35, 1988, 4-6.
- [12] ZADEH, L.A.: Probability measure on fuzzy events. J. Math. Anal.Appl. 23, 1968, 421-427.