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ABSTRACT. We present a generalization of a representation lemma for o-observables,
known for quantum logics, to a weakly orthocomplemented o-poset. As a special case
we also obtain a representation theorem for F-quantum spaces.

1. INTRODUCTION

If P is a quantum logic, z,y : B(R) — P are two observables and z(B(R)) C
y(B(R)), then there is a Borel measurable function 7' : R — Rsuchthatz = yo T™!
(see e.g. [2], [11]). In this note, we present a generalization of this lemma. As a
special case we obtain also a representation lemma in F-quantum spaces ([3,8,9]).
This result enables us to prove a variant of the ergodic theorem in F-quantum
spaces ([5]) and probably some other limit theorems, too ([4]).

We shall say that a partially ordered set P with a mapping a — a' is a weakly
orthocomplemented o-poset, if (z) (a')’ > a for every a € P; (3t) if a,b € P, a < b,
then b’ < a'; (222) if (ai)i C P, ai < aj (i # j), then there exists \/a; in P; (i)
a # da' for every a € P. These posets were studied e.g. in [1]. :

We note that for every a € P we have @' = a'"’. Indeed, since a < a", then
a' > d" and a' < (a')"”. Analogically, we may show that {a € P: a = d"} =
{t/: be P}.

Two elements a and b from P are orthogonal and we write a L bif a < b'.

A set F of functions f : X — [0,1] is an F-quantum space, if the following
conditions are satisfied: a) F' contains the constant function 0 and does not contain
the constant function 1/2; b)if f € F, then f' =1—-f € F;¢)if fo € F (n = 1,2,...),
then sup f,, € F.

n
It is clear that every F-quantum space satisfies the above assumptions (z) — (iv).
Motivated by some physical reasons, J. Pykacz ([7]) suggested to substitute the
property c) in F-quantum spaces by a weaker one: ¢;) if f, € F (n =1,2,...) and
fa £ frn =1 = fm (n # m), then sup f, € F. Evidently, also the weaker form of

an F-quantum space satisfies the above assumptions. It is simple to show that it is
not true , that fV f' =1, in general.

A q-o-algebra @ ([10]) is a family of subsets of a given set X satisfying the
following conditions: 1) ) € Q; 2)if A€ Qthen X\ A€ @; 3)if 4, € Q (n =
1,2,...) and A,, are pairwise disjoint, then | J A, € Q.

Put now F' = {xa: A € Q}. F satisfies the assumptions a), b), ¢1), and, hence,
the assumptions (z) — (zv), too.
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Let H be a pre-Hilbert space, P be the set of all closed subspaces of H. Then P
satisfies the assumptions (i) — (iv) (with A’ = {z € H; (z,a) = 0 for any a € A}),
but P need not be a logic.

There are examples of subspaces of H such that A" # A, and AV A’ # H. Let,
in P := {0,a,d',b,0',b",¢c,d,1},the partially ordering be given according to Fig. 1.
The orthocomplementation a — a' in P is defined by the following relations: ¢’ = 1,

00=1,1=c¢c d=c - A
= a’ o
Iy a
5 C
0
FiGg. 1.

2. REPRESENTATION OF OBSERVABLES

Definition 1. Let B denote a o-algebra of subsets of a nonvoid set Y.
Let P be a weakly orthocomplemented o-poset. A mapping z: B — P is called a
o-homomorphism if :

1) z(E°) = (z(E))' for every E € B;
2) »(E) Lz(F)if E,Fe€B, ENF =0
3) if E, € B(n=12,...)and E;NE; = @ for i # j, then z(|J Epn) = V z(Ey,).

In particular, if B = B(R) (B(R) is the set of all Borel subsets in R), then o-homo-
morphism z is called an observable.

It is not difficult to see, that every o-homomorphism satisfies the following con-
ditions: If An (n = 1,2,...) are subsets from B and z is an ¢-homomorphism , then
Vz(A,) and Az(A,) exist in P, and

:c(LhJA,,) = \'{z(An), :c(rn]An) = /n\a:(An).
If Ay C Az, then z(A4;) < z(A42). '

Theorem 1. Let P be a weakly orthocomplemented o-poset. Let y,z :
B(R) — P be two observables and 2(B(R)) C y(B(R)). Then there is a Borel
measurable mapping T : R — R, such that z(E) = y(T~'(E)) for every E € B(R).

P r o o f. First we prove the following lemma:
HA)BaC S B(R)’ y(A) = Z((—OO,T)), y(B) = Z((—OO,S)), y(C) = z((“°°1t))’
ACC andr £ s < t, then there is a D € B(R) such that A C D C C and
y(D) = z((—o0, 3)).

Indeed, it suffices to put D = (AU B)NC. Then
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y(D) = (y(4) Vy(B)) Ay(C)
— (z((—oo,r)) v z((—oo,s))) A z((—00, 1))

= z(((——oo,r) V (—00,3)) A (——oo,t))
= z((~00,)).

Now let (r;); be a sequence of all rational numbers. First we shall construct a
sequence (E;); of Borel sets such that r; < r; implies E; C E;, y(E;) = z((—o0,7;)).
By the assumption, there are F; € B(R) such that y(F;) = z((—o0,r;)). We put
E, = Fy and define (E,), by the induction:

1. ¥r, >rg, ri = max {r1,...,7n—1}, then E,, = Ex U F,.

2. frp, <ri, ri =min {ry,...,rn_1}, then we put E,, = E; N F,.

3. If there are i,k € {1,...,n — 1} such that r; = min {rp, : rm > rp, m =
1,.,n—1}>rr =max {rp : rm <rn, m=1,...,n— 1}, then we use the
previous lemma.

If now we put G; = E;\ () Ej, then evidently (| G; = @ and r; < r; yields G; C G;.
Moreover, 5=1 =1

w(G) =y(B:n (NE))) = uE) A (Au(E)
= 2((=00,r) A (A((=00,7,))) = 2((=00,7) N ( [Y(=00,7,))°)

J
= z((—o00,7:))
Now we define for every t € R

inf {r;; t€ G;}, ifte UGj
T) = J=1
0 otherwise.

Then T: R — R is a well-defined mapping and
T~ ((—o0,ri)) = J{Gj : rj <mi}, if ri <0,

T7'((—o0,r:)) = | J{Gj : rj <r}U(|JGr), if ri > 0.
k

We see, that T is Borel measurable. Moreover,
y(T7((=00,m))) = VH{W(Gy) : 15 <ri} =
= V{z((—o0,r5)) : rj <ri} = 2((—00,r:))

if r; <0, and similarly as in the second case we have
y(T_l((—oo,ri))) = 2z((—o0,r;)) for every r;.

Since, K := {E € B(R); y(T~!'(E)) = z(E)} includes C := {(~oo,r); r € Q},
and y, z and 7! are o-homomorphisms, we see that K is a o-algebra. Therefore,
B(R) = 0(C) C K, so that y(T~'(E)) = 2(E) for every E € B(R).

O
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Corollary 1. IfB = B(Y)is a Borel o-algebra of a complete separable metric
space Y, then the statement of Theorem 1 is valid for all observables z,y; B — P
such that z(B) C y(B).

P r o o f. Due to a classical theorem of the separable descriptive theory ([6,
par. 33, Th. 2]), we have that B(Y') is o-isomorphic to B(R).
O

Corollary 2. Let L be a quantum logic, * be an observable, 7: L — L
be an z-measurable o-homomorphism (i.e. T(:c (B(R))) C z(B(R)) ). Then there

exists a Borel measurable mapping T : R — R such that 7(z(E)) = z(T~(E)) for
every E € B(R).

Proof . . Putz=71o01z y==x.

d

Now we shall present a theorem which is in certain sence a generalization of
Theorem 1. It holds, in particular, in more general topological spaces; of course,
the observables y and z are assumed to satisfy some further conditions.

T heorem 2. Let B be a g-algebra of subsets of a set Y # () containing
a countable generator of B. Let P be a weakly orthocomplemented o-poset. Let
y,z : B — P be o-homomorphisms such that y(E) = y(0) iff E = 0, and 2(B) <
y(B). Then there is a B-measurable mapping T: Y — Y such that z =y o T™!.
Proof . Let (F;)2, be a countable generator of B. Without loss of generality

e ¢]
we may assume that [J F; =Y in the opposite case (F;)32, is also a generator of
=1

B, where Fy = ( | F)°.
=1

Foranyt €Y, W:e define

Fo={y(E): te E€B}and G: ={G € B: z(G) € F;}.
Due to the injectivity of y, G¢ is a maximal o-filter of B, that is (1) G; # 0;
(2) G, € Gy, n > 1, implies (G, € G¢; (3) G C H € B, G € Gy, then H € Gy;

(4) G contains exactly one of the elements A, A° for every A € B.
Define a sequence (F,-(t))z1 via

F; if F; € Gy,
Fe if F; ¢ G+.

!

Fi(t) = {

o0

Then F;(t) € Gt for any ¢ > 1, and the intersection C = [ F;(t) is non-void element
i=1

of G;. Indeed, in the opposite case we would have § = C € Gy, consequently,

G: = B. Therefore, there exists some point T(t) € Y, say, such that T(¢) € C.

We claim to show that the mapping T': Y — Y defined viat — T'(¢), t € Y, is
measurable and y(T~(G)) = 2(G) for any G € B.

Due to our assumptions, y is injective. Hence, for any G € B, there exists a unique
E € B such that 2(G) = y(E). We assert that T71(G) = E.

Let t € T7(@), then T(t) € G, and suppose t ¢ E, then t € E°¢, and 2(G°) =
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(2(@)) = (y(E)) = y(E®), i.e., E° € F; and G° € G.
Since the system X = {A € B: ANC =0 or C C A} is a o-algebra containing
all Fi(t) (: 2 1), i.e. X =B, C C A for every A € G which entails T(¢t) € G° and
this contradicts ¢t ¢ E.

If now t € E, then y(E) € F;. Because y(E) = 2(G), we have G € Gy, T(t) € G,
ie. t € T7YG).
We have proved that T~1(G) = E and 2(G) = y(E) = y(T~Y(G)).

d
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