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Abstract: In this paper, we first introduce the concepts of R-convergence of nets and R-closures in fuzzy
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respect to almost continuous and R-irresolute order-homomorphisms by means of the theory.
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1. Preliminaries

Throughout this paper, L, L and L. will always denote fuzzy lattices, i.e. completely
distributive lattices with order-reversing involutions“’ 7. M, M, and M; will denote the
set of all nonzero V-irreducible elements i.e. so-called moleculae, or points for short, in
L, L, and L, respectively. (L(M),5), (L.:(M)),6,) and (L:(M:), ;) will be topological
molecular lattices (briefly, TML) with the topolegy J, 4, and J; respectively. Put
n(e)={P €b’; e4P} and call the elements in 7(e) R-neighborhoods of a point eeM[5].
Write Rn(e)={Pen(e): P=P°" }.

A mapping f:I.;—L. is said to be an order-homomorphism if the following conditions
hold: (H,) f(0)=0; (H:) f(VAi)=VI(Ai); (Hs) £'B')=({"'(B))’'[6]. An order-homomorphism
(briefly, OH) f:(L:(M1),61)—(L2(M2),d:) is called almost continuous (R-irresolute) if the

inverse image of every regular open element in L, is open (regular open) in L.
2. Theory of R-convergence of nets in fuzzy lattices

Definition 2.1 Let (L(M),§) be a TML, AcL. and ecM. e is in the R-closure of A
(e<Ag) if for each PeRn(e), ASP. If e<Ar, then we call e a R-adherence point of A. A
is called R-closed if A=Ar. A is called R-open if A’ is R-closed.

The follwing theorem follows immediately from Definition 2.1.
Theorem 2.1 In any TML (L(M),5) we have:



(1) The least element 0 and the greatest element 1 of L are R-closed.

(2) A<A~ <Ar<A¢[4] for each AeL.

(3) If A<B, then ArR<Bg for A, BeL.

(4) Ar=V {eeM:e is a R-adherence point of A} for A€L.

(5) Arbitrary intersections and finite unions of R-closed elements are R-closed.

(6) Every R-closed element is closed.

(7) Every 0-closed element is R-closed.

(8) Every regular closed element is R-closed.

(9) If Aed, then A~ =Ar=Ay.
Definition2.2 A point e in (L(M),5) is said to be a R-cluster point of an element A in
(LM),8) if (1) e<Ag; (2) e A, or e<A and A<{PVb for each Pey(e) and each b in M with
e<b<A. The union of all R-cluster points of A will be denoted by Arand called the
R-derived element of A.
Theorem 2.2 Let (L(M),5) be a TML, AcL. Then

(1) Ar=AVAR

(2) (ADR<Ag.

(3) A is R-closed iff for each point e A, there exists PeRy(e) such that A<P.
Proof. The proofs of (1) and (2) are easy and are omitted. We only check (3). In case A
is R-closed and e<A, then e<$ Az, and then there exists PeRn(e) such that A<P by
Definition2.1. Conversely, if A is not R-closed, then we have a point eeM such that
e<Ar and e A by Proposition 2.17 in [5]. However, being e<Agr, we know that there is
not PeRn(e) such that A<P. Hence the sufficiency is proved.
Definition 2.3 Let S be a molecular net in (L(M),5) and eeM. If for each PeRn(e), S is
eventually not in P, then e is called a R-limit point of S (or S R-converges to e), in
symbols S— e. If for each PeRy(e), S is frequently not in P, then e is called a R-cluster
point of S (or S R-accumulates to e), in symbols S ¥ e. The union of all R-limit points
and all R-cluster points of S will be denoted by R-limS and R-adS respectively.

From the definition, Definition4.17 in [5] and Definition3.3 in [3] one can readily
verify the following theorem:
Theorem 2.3 Let S be a molecular net in (L(M),5) and eeM. Then we have:

(1) Speiff e <R-lim S.

(2) S e iff e<R-ad S.

(3) lim S<R-limS<#-lim S.

(4) ad S<R-adS<#§-ad S.

(5) R-lim S<R-ad S.
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(6) R-lim S and R-ad S are R-closed.
Where 6-1imS and 6-adS denote the union of all #-limit points[3] and all 8-cluster points
[3] of S respectively.
Proof. We only investigate Statement (6). Let e<(R-limS)s. Then for each PeRy(e) we
have R-1limS<P by Definition 2.1, and hence there is a point beM such that b<R-lim S
and b<P according to Proposition 2.7 in [5]. Since PeRxn(b) and b<R-lim S, by
Statement(l), S is eventually not P. So e<R-lim S. This implies that R-lim S is R-closed.
Similarly, R-adS=(R-adS)z.
Theorem 2.4 In a TML (L(M),8), e<Ar iff there exists in A a molecular net which
R-converges to e.
Proof. Let e<Ag; then for each PeR#(e) we have A<P. In the light of Proposition 2.17
in [5], there is a molecula S(P) in A with S(P)<P. Take S={S(P): PeRyn(e)}. Obviously, S
is a molecular net in A by virtue of the fact that Rzn(e) is an ideal base and S e.
Conversely, if S={S(n): neD} is a molecular net in A and S e, then for each PeRn(e),
there is neD such that S(n)<P whenever n>n, (neD). Hence A<P, and hence e<Ar
by Definition 2.1.
Theorem 2.5 Let S be a molecular net in (L(M),5) and eesM. Then S ©e iff S has a
subnet T satisfying T pe.
Proof. Suppose that S={S(n): neD} is a molecular net in (L(M),5) and S ¥ e. Then for
each PeRn(e) and each neD, there exists N(P,n)eD such that N(P,n)>n and
S(N(P,n))<P. Let E=Rzn(e) XD and define

(Pi,N(P1,n1)) <(P:,N(P;3,n,)) iff P,<P; and n;<n..

Then E is a directed set. Take T(P,N(P,n))=S(N(P,n)). Then we obtain a subnet T={T(P,
N(P,n)):(P,N(P,n))eE} of S. For each QeR#n(e), choose (Q,N(Q,n))eE, we have T(P,N(P,n))
4 Q whenever (P,N(P,n))>(Q,N(Q,n)) because of the fact that T(P,N(P,n))=S(N(P,n))<P
and Q<P. This shows that T is eventually not in Q, and so T R-converges to e.
Conversely, provided that T={T(m): meE} is a subnet of S and T e. For each n«eD, we
have a mapping N:E—-D and m,E such that Nm)>n, as m>m, (meE). Since T
R-converges to e, there is m,;eE with T(m)<P as long as m>m, (meE) for each PeR#(e).
Because E is a directed set, we have mscE such that m.>m, and m.>m,. Hence
T(m:)$P and N(m;:)>n,. Let n=N(m;). Then S(n)=S(N(m;))=T(m;)$<P and n>n,. This
means that S is frequently not in P. Hence S ®e.
Theorem 2.6 Assume that S is a molecular net in (L(M),8). If S R-converges to eeM ,
then every subnet of S also R-converges to e.

Proof. The proof is straightforward and is omitted.



3. Applications with Respect to Theory of R-convergence of Nets

In [1], N.Ajmal and S.K. Azad introduced the notion of fuzzy almost continuity at a
fuzzy point and obtained a pointwise charactrization of fuzzy almost continuous
functions by dual points and fuzzy nets. In this section, we shall present the concepts of
almost continuous and R-irresolute order-homomorphisms at a point, which are a
proper generalization of that in [1], and get more characters of almost continuity and
R-irresoluteness by theory of R-convergence of nets.

Definition 3.1 Let f:(L.(M.),6:)—(L2(Ms),8:) be an OH and eeM. f is said to be almost
continuous at e if for each PeR#n(f(e)) we have (f"'(P))~ en(e).
Theorem 3.1 An OH f:(L.(M,)8,)—(L2(M,),5;) is almost continuous iff for each point
eeM,, f is almost continuous at e.
Proof. Suppose that f is almost continuous, eesM; and PeR#(f(e)). Then £~'(P)=(f"'(P))~
by Theorem 2.2 in [2]. Since f(e)§P iff ekf' (P), ('(P))~ en(e). Hence f is almost
continuous at e. Conversely, if f is not almost continuous, then there exists a regular
closed element B in (4:)’ such that f'(B)<(f"'(B))” . In accordance with Proposition
2.17 in [5] we have a point eeM, satisfying e<(f"!(B))” and e<f !(B). Because e<%f '(B)
implies f(e)<B, BeRy(f(e)). However, (f"'(B))~ ¢n(e). Therefore the sufficiency holds.
Theorem 3.2 An OH f:(Li(M,),6,) »(L2(M:),8,) is almost continuous iff for each AeL,,
f(A~ )<(f(A))z.
Proof. In case f is almost continuous and AeL,, then for each point e<A~ and each
PeRy(f(e)) we have (f'(P))~ en(e), and then A<(f!(P))~ =f"'(P), i.e. f(A)<kP. Therefore f
(e)<(f(A))r by Definition 2.1. This implies f(A~ )<qf(A))r. Conversely, suppose that the
condition is satisfied and that B is a regular closed element in L,. Then we have
f((f'(B))” )<(ff-'(B))r<Br=B by Theorem 2.1 (6), equivalently, (f"'(B))~ <f'(B). This
shows that f is almost continuous.
Theorem 3.3 An OH f:(L:(M,),8:) —»(L:(M:),5;) is almost continuous iff for each point
ecM, and each molecular net S in L, which converges to e, f(S) R-converges to f(e).
Proof. Assume that f is almost continuous, eeM,; and PeRn(f(e)). Then (f"'(P))~ en(e) by
Theorem 3.1. Let S={S(n): neD} be a molecular net in L; which converges to e. Then
there is noeD such that Sm)<$({'(P))~ =f"'(P) whenever n>n, (neD). Since S()<kf'(P)
implies f(S(n))<P, f(S)={f(S(n)): neD} R-converges to f(e). Conversely, grant that B is a
regular closed element in L;. We shall prove that (f"'(B))” <f '(B). For this aim, let e<<
(f'(B))” . According to Corollary 4.23 in [5], there exists in f'(B) a molecular net S
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which converges to e. Obviously f(S) is a molecular net in B. Hence f(S) R-converges to
f(e) by the condition of the theorem, and hence f(¢)<Br=B, that is, e<f '(B). This
means that (f7'(B))” <f!(B). Thus the almost continuity of f follows immediately.
Theorem 3.4 An OH f£(L.(M)),8,)—(L:(M;),0;) is almost cotinuous iff for each
molecular net S in L,, f{1imS) <R-limf(S).
Proof. Presume that S is a molecular net in L;. By Theorem 2.3 and Theorem 4.21 in
[6], we know easily that f(limS)<R-limf(S) iff for each point eeM,; and e<limS,
f(e)<R-limf(S), i.e. f{(1imS)<R-limf(S) iff for each point eeMi, S—e implies f(S) f(e).
Hence the theorem follows from Theorem3.3
Theorem 3.5 An OH fi(L.(M)),5:) »(L:(Mz),5;) is almost continuous iff for each BeLs,,
('(B))” <f'(Br).
Proof. Since for each BeL,, f!(B)eL,, from Theorem 3.2 we obtain that if f is almost
continuous, then f((f'(B))” )<{ff'(B))r<Br. Hence (f'(B))” <f !(Br). Conversely,
assume that the condition is true and Ael,. Then f(A)eL; and A~ <(f'f(A))” -
<f'((f(A)R). So f(A~ )<(f(A))r and so f is almost continuous by Theorem 3.2.
Theorem 3.6 Let (L.(M,),5,) be a Ct TML [5]; then an OH f:(L:(M,),5,)—(L:(M.),5;) is
almost continuous iff for each point eeM; and each molecular sequence S in L; which
converges to e, f(S) R-converges to f(e).
Proof. The necessity follows from Theorem 3.3. Now we only prove the sufficiency. If f
is not almost continuous, then there exists a point eeM, such that f is not almost
continuous at e. This is the same as there is QeRn(f(e)) with (f7'(Q))~ ¢n(e). Let {Px
neN} be an increasing R-neighborhood base of e. Then for each neN we have £'(Q) <P,
and then there is a molecula S(n) satisfying S(n)<f'(Q) and S(n)<P. Take S={S(n):
neD}, one easily sees that S is molecular sequence in L: which converges to e.
However, f(S) does not R-converges to f(e) because for each neN, S(n)<f'(Q), i.e. f(S(n))
<Q.
Definition 3.2 An OH f:(L,(M,),6,)—(L2:(M,),5.) is called R-irresolute at a point eeM, if
for each PeRn(f(e)), (' (P))r en(e).
Theorem 3.7 An OH fi(Li(M,),8:)— (L:(M),85) is R-irresolute iff for each point eeM,, f
is R-irresolute at e.
Proof. Let f is R-irresolute, eesM; and PeRy(f(e)). Then f~!(P) is regular closed in L; by
Theorem 4.5 in [2], and then f!(P)=(f"'(P))z in the light of Theorem 2.1. Since f(e)<kP
implies that e<f'(P), (f-'(P))ren(e). This shows that f is R-irresolute at e. Conversely,
in case f is not R-irresolute, then there is a regular closed element Q in L, such that f!
(Q) is not regular closed in L. Hence £ (Q)< (f"!(Q))s. From Proposition 2.17 in [5] we
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have a point eeM, such that e '(Q) and e<(f" Q). But ef!(Q) implies QeRn(f(e)).
Therefore f is not R-irresolut at e.
Theorem3.8 An OH £:(L\(M,),5:)— (L2(M),8:) is R-irresolute iff for each A€L, f(Ar)<(f
(A)k .
Proof. Provided that f is R-irresolute and AeL,. In order to investigate f(AR)<(f(A))R,
we only need to verify that for each point eeM, and e<Ag, f(e)<(f(A))r. For this
purpose, in case PeRyn(f(e)), then f~'(P)=(f"'(P))r en(e) by Theorem 3.7. Being e<Ag, we
have A<f'(P), i.e. f(A)<P. Hence f(e)<(f(A))r by Definition 2.1. Conversely, suppose
that the condition is satisfied, eeM, and QeRz(f(e)). Since f(e)<Q iff e<tf'(Q), we have
F((E QIR <UE'(Q)r<Qr=Q, that is, (f(Q)r<f"'(Q). Therefore (f"'(Q)r en(e). This
shows that f is R-irresolute at e. Hence the sufficiency follows from Theorem 3.7.
Theorem 3.9 An OH f:(L,(M)),5:)—(L2(M3),5:) is R-irresolute iff for each point eeM,
and each molecular net S in L; which R-converges to e, f(S) R-converges to f(e) in L..
Proof. Assume that f is R-irresolute, ecM; and PeRzn(f(e)). Then (f~'(P))ren(e) by
Theorem 3.7. Let S={S(n): neD} be a molecular net which R-converges to e in L. Then
there exists noeD such that S(n)<$(f"'(P))z, specially, S(n)<$f'(P) as long as n>n, (neD).
Hence f(S)={f(S(n): neD} R-converges to f(e) by virtue of the fact that Sm)<f'(P)
implies that f(S(n))<P. Conversely, let AeL, and e<Ar (eeM,). By Theorem 2.4, there
exists in A a molecular net S which R-converges to e. Obviously, f(S) is a molecular net
in f(A). Hence f(S) R-converges to f(e) using the condition of the theorem, and hence
f(e)<(f(A))z. This means that f(Ar)<(f(A))r. So f is R-irresolute by Theorem 3.8.
Theorem 3.10. An OH f:(Li(M,),6:)—(L2(M3),0:) is R-irresolute iff for each molecular
net in L, f{(R-1imS)<R-limf(S).
Proof. The proof follows from Theorem 2.3 and Theorem 3.9 and is omitted.
Theorem 3.11 An OH f:(L,(M,),5:)—(L2(M;),8:) is R-irresolute iff for each BeL., (f*'(B))
R <(f"'(Bg)).
Proof. If f is R-irresolute and BeLs, then f'(B)eL: and f(f"'(B))r)<(ff'(B))r<Bk,
equivalently, (f~'(B))z<f"'(Br) by Theorem 3.8. Conversely, if the condition is true, then
for each Ael, we have Ar <(f'(fA))r<f'({(A)g), i.e. f(AR)<(f(A))r. Hence the
R-irresoluteness of f follows from Theorem 3.8.
Theorem 3.12 Let f:(Li(M,),5:) »(L2(M:),6:) be an OH. Then the following conditions
are equivalent:

(1) f is R-irresolute.

(2) For each R-closed element P in L,, f'(P) is a R-closed element in L.

(3) For each R-open element G in L., f"!(G) is a R-open element in L.
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Proof. The equivalence between (2) and (3) is clear. Now we prove that (1) is
equivalent to (2). Suppose that f is R-irresolute and that P is R-closed in L.. Then
f~Y(P)=f"'(Pr)>('(P))x by Theorem 3.11. On the other hand, f'(P)<(f"'(P))r follows
from Theorem 2.1. Hence f~'(P) is R-closed in L,. Conversely, in case (2) holds, then for
each ecM, and each QeRn(e) we have f'(P)=(f"'(P))r. Since f(e)<P implies that
e<f'(P), ('(P))ren(e) by Theorem 2.1(6). This means that f is R-irresolute at e. Hence f
is R-irresolute in the light of Theorem 3.7.
Analogous to proof of Theorem 3.6 we have:

Theorem 3.13 If (L.(M,),8:) is a Ci TML, then an OH f:(L.(M.),6:)—=(L:(M2),82) is
R-irresolute iff for each point eesM, and each molecular sequence S in L. which

R-converges to e, f(S) R-converges to f(e).
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