Theory of R-convergence of Nets in Fuzzy Lattices and Its Applications

Cheng Ji-Shu

Department of Mathematics, Qinghai Junior Teachers' College, Xining, 810007, P.R. China

Chen Shui-Li

Department of Mathematics, Jianghan Petroleum Institute, Jiangling Hubei, 434102, P.R. China

Abstract: In this paper, we first introduce the concepts of R-convergence of nets and R-closures in fuzzy lattices, and systematically discuss their properties. We obtain more interesting characterizations with respect to almost continuous and R-irresolute order-homomorphisms by means of the theory.

Keywords: fuzzy lattice; R-convergence; R-closure; order-homomorphism; almost continuity; R-irresoluteness

1. Preliminaries

Throughout this paper, L, L₁ and L₂ will always denote fuzzy lattices, i.e. completely distributive lattices with order-reversing involutions" ". M, M₁ and M₂ will denote the set of all nonzero \vee -irreducible elements i.e. so-called moleculae, or points for short, in L, L₁ and L₂ respectively. (L(M), δ), (L₁(M₁), δ ₁) and (L₂(M₂), δ ₂) will be topological molecular lattices (briefly, TML) with the topology δ , δ ₁ and δ ₂ respectively. Put $\eta(e) = \{P \in \delta'; e \not P\}$ and call the elements in $\eta(e)$ R-neighborhoods of a point $e \in M[5]$. Write $R\eta(e) = \{P \in \eta(e): P = P^{0-}\}$.

A mapping $f:L_1 \to L_2$ is said to be an order-homomorphism if the following conditions hold: (H_1) f(0)=0; (H_2) $f(\vee A_i)=\vee f(A_i)$; (H_3) $f^{-1}(B')=(f^{-1}(B))'[6]$. An order-homomorphism (briefly, OH) $f:(L_1(M_1),\delta_1)\to (L_2(M_2),\delta_2)$ is called almost continuous (R-irresolute) if the inverse image of every regular open element in L_2 is open (regular open) in L_1 .

2. Theory of R-convergence of nets in fuzzy lattices

Definition 2.1 Let $(L(M),\delta)$ be a TML, A \in L and e \in M. e is in the R-closure of A $(e \le A_R)$ if for each $P \in R\eta(e)$, $A \le P$. If $e \le A_R$, then we call e a R-adherence point of A. A is called R-closed if $A = A_R$ A is called R-open if A' is R-closed.

The follwing theorem follows immediately from Definition 2.1.

Theorem 2.1 In any TML $(L(M),\delta)$ we have:

- (1) The least element 0 and the greatest element 1 of L are R-closed.
- (2) $A \le A^- \le A_R \le A_{\theta}[4]$ for each $A \in L$.
- (3) If $A \le B$, then $A_R \le B_R$ for $A, B \in L$.
- (4) $A_R = \bigvee \{e \in M : e \text{ is a R-adherence point of A} \} \text{ for } A \in L.$
- (5) Arbitrary intersections and finite unions of R-closed elements are R-closed.
- (6) Every R-closed element is closed.
- (7) Every θ -closed element is R-closed.
- (8) Every regular closed element is R-closed.
- (9) If $A \in \delta$, then $A^- = A_R^- = A_{\theta}$.

Definition 2.2 A point e in $(L(M),\delta)$ is said to be a R-cluster point of an element A in $(LM),\delta$) if (1) $e \leq A_R$; (2) $e \leq A$, or $e \leq A$ and $A \leq P \vee b$ for each $P \in \eta(e)$ and each b in M with $e \leq b \leq A$. The union of all R-cluster points of A will be denoted by A_R^d and called the R-derived element of A.

Theorem 2.2 Let $(L(M), \delta)$ be a TML, A \in L. Then

- (1) $A_R = A \vee A_R^d$
- (2) $(A^d)_R < A_R$.
- (3) A is R-closed iff for each point $e \not A$, there exists $P \in R\eta(e)$ such that $A \not < P$.

Proof. The proofs of (1) and (2) are easy and are omitted. We only check (3). In case A is R-closed and $e \not A$, then $e \not A_R$, and then there exists $P \in R\eta(e)$ such that $A \not P$ by Definition 2.1. Conversely, if A is not R-closed, then we have a point $e \in M$ such that $e \not A_R$ and $e \not A$ by Proposition 2.17 in [5]. However, being $e \not A_R$, we know that there is not $P \in R\eta(e)$ such that $A \not P$. Hence the sufficiency is proved.

Definition 2.3 Let S be a molecular net in $(L(M),\delta)$ and eeM. If for each $P \in R\eta(e)$, S is eventually not in P, then e is called a R-limit point of S (or S R-converges to e), in symbols $S_{\overrightarrow{R}}$ e. If for each $P \in R\eta(e)$, S is frequently not in P, then e is called a R-cluster point of S (or S R-accumulates to e), in symbols $S_{\overrightarrow{R}}$ e. The union of all R-limit points and all R-cluster points of S will be denoted by R-limS and R-adS respectively.

From the definition, Definition4.17 in [5] and Definition3.3 in [3] one can readily verify the following theorem:

Theorem 2.3 Let S be a molecular net in $(L(M),\delta)$ and $e \in M$. Then we have:

- (1) $S \rightarrow e$ iff $e \leq R$ -lim S.
- (2) $S \stackrel{\infty}{P} e \text{ iff } e \leq R\text{-ad } S.$
- (3) $\lim S \leq R \lim S \leq \theta \lim S$.
- (4) ad $S \le R$ -ad $S \le \theta$ -ad S.
- (5) R-lim $S \leq R$ -ad S.

(6) R-lim S and R-ad S are R-closed.

Where θ -limS and θ -adS denote the union of all θ -limit points[3] and all θ -cluster points [3] of S respectively.

Proof. We only investigate Statement (6). Let $e < (R-\lim S)_R$. Then for each $P \in R\eta(e)$ we have $R-\lim S \not \in P$ by Definition 2.1, and hence there is a point $b \in M$ such that $b < R-\lim S$ and $b \not \in P$ according to Proposition 2.7 in [5]. Since $P \in R\eta(b)$ and $b < R-\lim S$, by Statement(1), S is eventually not P. So $e < R-\lim S$. This implies that $R-\lim S$ is $R-\operatorname{closed}$. Similarly, $R-\operatorname{ad} S = (R-\operatorname{ad} S)_R$.

Theorem 2.4 In a TML (L(M), δ), $e \le A_R$ iff there exists in A a molecular net which R-converges to e.

Proof. Let $e \leq A_R$; then for each $P \in R\eta(e)$ we have $A \not\in P$. In the light of Proposition 2.17 in [5], there is a molecula S(P) in A with $S(P) \not\in P$. Take $S = \{S(P): P \in R\eta(e)\}$. Obviously, S is a molecular net in A by virtue of the fact that $R\eta(e)$ is an ideal base and $S_{\overrightarrow{R}}$ e. Conversely, if $S = \{S(n): n \in D\}$ is a molecular net in A and $S_{\overrightarrow{R}}$ e, then for each $P \in R\eta(e)$, there is $n_0 \in D$ such that $S(n) \not\in P$ whenever $n > n_0$ ($n \in D$). Hence $A \not\in P$, and hence $e \leq A_R$ by Definition 2.1.

Theorem 2.5 Let S be a molecular net in $(L(M),\delta)$ and $e\in M$. Then $S\underset{\mathbb{R}}{\infty}$ e iff S has a subnet T satisfying $T\underset{\mathbb{R}}{\rightarrow}$ e.

Proof. Suppose that $S = \{S(n): n \in D\}$ is a molecular net in $(L(M), \delta)$ and $S \stackrel{\infty}{=} e$. Then for each $P \in R\eta(e)$ and each $n \in D$, there exists $N(P,n) \in D$ such that $N(P,n) \ge n$ and $S(N(P,n)) \triangleleft P$. Let $E = R\eta(e) \times D$ and define

 $(P_1,N(P_1,n_1)) \leq (P_2,N(P_2,n_2)) \text{ iff } P_1 \leq P_2 \text{ and } n_1 \leq n_2.$

Then E is a directed set. Take T(P,N(P,n))=S(N(P,n)). Then we obtain a subnet $T=\{T(P,N(P,n)):(P,N(P,n))\in E\}$ of S. For each $Q\in R\eta(e)$, choose $(Q,N(Q,n))\in E$, we have T(P,N(P,n)) $\leq Q$ whenever (P,N(P,n))>(Q,N(Q,n)) because of the fact that $T(P,N(P,n))=S(N(P,n))\leqslant P$ and $Q\leq P$. This shows that T is eventually not in Q, and so T R-converges to e. Conversely, provided that $T=\{T(m): m\in E\}$ is a subnet of S and $T_{R} \in F$ or each $n_0\in D$, we have a mapping $N:E\to D$ and $m_0\in E$ such that $N(m)>n_0$ as $m>m_0$ ($m\in E$). Since T R-converges to e, there is $m_1\in E$ with $T(m)\leqslant P$ as long as $m>m_1$ ($m\in E$) for each $P\in R\eta(e)$. Because E is a directed set, we have $m_2\in E$ such that $m_2>m_0$ and $m_2>m_1$. Hence $T(m_2)\leqslant P$ and $N(m_2)>n_0$. Let $n=N(m_2)$. Then $S(n)=S(N(m_2))=T(m_2)\leqslant P$ and $n>n_0$. This means that S is frequently not in P. Hence $S\underset{R}{\otimes} e$.

Theorem 2.6 Assume that S is a molecular net in $(L(M),\delta)$. If S R-converges to $e \in M$, then every subnet of S also R-converges to e.

Proof. The proof is straightforward and is omitted.

3. Applications with Respect to Theory of R-convergence of Nets

In [1], N.Ajmal and S.K. Azad introduced the notion of fuzzy almost continuity at a fuzzy point and obtained a pointwise charactrization of fuzzy almost continuous functions by dual points and fuzzy nets. In this section, we shall present the concepts of almost continuous and R-irresolute order-homomorphisms at a point, which are a proper generalization of that in [1], and get more characters of almost continuity and R-irresoluteness by theory of R-convergence of nets.

Definition 3.1 Let $f:(L_1(M_1),\delta_1)\to (L_2(M_2),\delta_2)$ be an OH and eeM. f is said to be almost continuous at e if for each $P\in R\eta(f(e))$ we have $(f^{-1}(P))^-=\epsilon\eta(e)$.

Theorem 3.1 An OH $f:(L_1(M_1)\delta_1)\to(L_2(M_2),\delta_2)$ is almost continuous iff for each point $e\in M_1$, f is almost continuous at e.

Proof. Suppose that f is almost continuous, $e \in M_1$ and $P \in R\eta(f(e))$. Then $f^{-1}(P) = (f^{-1}(P))^-$ by Theorem 2.2 in [2]. Since $f(e) \not \in P$ iff $e \not \in f^{-1}$ (P), $(f^{-1}(P))^- \in \eta(e)$. Hence f is almost continuous at e. Conversely, if f is not almost continuous, then there exists a regular closed element B in $(\delta_2)'$ such that $f^{-1}(B) < (f^{-1}(B))^-$. In accordance with Proposition 2.17 in [5] we have a point $e \in M_1$ satisfying $e \not \in (f^{-1}(B))^-$ and $e \not \in f^{-1}(B)$. Because $e \not \in f^{-1}(B)$ implies $f(e) \not \in B$, $g \in R\eta(f(e))$. However, $(f^{-1}(B))^- \not \in \eta(e)$. Therefore the sufficiency holds. Theorem 3.2 An OH $f:(L_1(M_1),\delta_1) \to (L_2(M_2),\delta_2)$ is almost continuous iff for each $A \in L_1$,

Theorem 3.2 An OH $f:(L_1(M_1),\delta_1)\to (L_2(M_2),\delta_2)$ is almost continuous iff for each $A\in L_1$ $f(A^-) < (f(A))_R$.

Proof. In case f is almost continuous and $A \in L_1$, then for each point $e < A^-$ and each $P \in R_n(f(e))$ we have $(f^{-1}(P))^- \in \eta(e)$, and then $A \not < (f^{-1}(P))^- = f^{-1}(P)$, i.e. $f(A) \not < P$. Therefore f $(e) < (f(A))_R^-$ by Definition 2.1. This implies $f(A^-) < f(A)_R^-$. Conversely, suppose that the condition is satisfied and that B is a regular closed element in L_2 . Then we have $f((f^{-1}(B))^-) < (ff^{-1}(B))_R^- < B_R^- = B$ by Theorem 2.1 (6), equivalently, $(f^{-1}(B))^- < f^{-1}(B)$. This shows that f is almost continuous.

Theorem 3.3 An OH $f:(L_1(M_1), \delta_1) \to (L_2(M_2), \delta_2)$ is almost continuous iff for each point $e \in M_1$ and each molecular net S in L_1 which converges to e, f(S) R-converges to f(e).

Proof. Assume that f is almost continuous, $e \in M_1$ and $P \in R_\eta(f(e))$. Then $(f^{-1}(P))^- \in \eta(e)$ by Theorem 3.1. Let $S = \{S(n): n \in D\}$ be a molecular net in L_1 which converges to e. Then there is $n_0 \in D$ such that $S(n) \not < (f^{-1}(P))^- = f^{-1}(P)$ whenever $n \nearrow n_0$ ($n \in D$). Since $S(n) \not < f^{-1}(P)$ implies $f(S(n)) \not < P$, $f(S) = \{f(S(n)): n \in D\}$ R-converges to f(e). Conversely, grant that B is a regular closed element in L_2 . We shall prove that $(f^{-1}(B))^- < f^{-1}(B)$. For this aim, let $e < (f^{-1}(B))^-$. According to Corollary 4.23 in [5], there exists in $f^{-1}(B)$ a molecular net S

which converges to e. Obviously f(S) is a molecular net in B. Hence f(S) R-converges to f(e) by the condition of the theorem, and hence $f(e) < B_R = B$, that is, $e < f^{-1}(B)$. This means that $(f^{-1}(B))^- < f^{-1}(B)$. Thus the almost continuity of f follows immediately.

Theorem 3.4 An OH $f:(L_1(M_1),\delta_1)\to (L_2(M_2),\delta_2)$ is almost cotinuous iff for each molecular net S in L_1 , $f(\lim S) < R-\lim f(S)$.

Proof. Presume that S is a molecular net in L₁. By Theorem 2.3 and Theorem 4.21 in [5], we know easily that $f(\lim S) < R-\lim f(S)$ iff for each point $e \in M_1$ and $e < \lim S$, $f(e) < R-\lim f(S)$, i.e. $f(\lim S) < R-\lim f(S)$ iff for each point $e \in M_1$, $S \to e$ implies $f(S) \to f(e)$.

Hence the theorem follows from Theorem 3.3

Theorem 3.5 An OH $f:(L_1(M_1),\delta_1)\to (L_2(M_2),\delta_2)$ is almost continuous iff for each $B\in L_2$, $(f^{-1}(B))^- \leq f^{-1}(B_R^-)$.

Proof. Since for each $B \in L_2$, $f^{-1}(B) \in L_1$, from Theorem 3.2 we obtain that if f is almost continuous, then $f((f^{-1}(B))^-) < (ff^{-1}(B))_R < B_R$. Hence $(f^{-1}(B))^- < f^{-1}(B_R)$. Conversely, assume that the condition is true and $A \in L_1$. Then $f(A) \in L_2$ and $A^- < (f^{-1}f(A))^- < f^{-1}((f(A))_R)$. So $f(A^-) < (f(A))_R$ and so f is almost continuous by Theorem 3.2.

Theorem 3.6 Let $(L_1(M_1), \delta_1)$ be a C_1 TML [5]; then an OH $f:(L_1(M_1), \delta_1) \to (L_2(M_2), \delta_2)$ is almost continuous iff for each point $e \in M_1$ and each molecular sequence S in L_1 which converges to e, f(S) R-converges to f(e).

Proof. The necessity follows from Theorem 3.3. Now we only prove the sufficiency. If f is not almost continuous, then there exists a point $e \in M_1$ such that f is not almost continuous at e. This is the same as there is $Q \in R\eta(f(e))$ with $(f^{-1}(Q))^- \notin \eta(e)$. Let $\{P_n \in N\}$ be an increasing R-neighborhood base of e. Then for each $n \in N$ we have $f^{-1}(Q) \notin P_n$, and then there is a molecula S(n) satisfying $S(n) \leq f^{-1}(Q)$ and $S(n) \notin P_n$. Take $S = \{S(n): n \in D\}$, one easily sees that S is molecular sequence in L_1 which converges to e. However, f(S) does not R-converges to f(e) because for each $n \in N$, $S(n) \leq f^{-1}(Q)$, i.e. $f(S(n)) \leq Q$.

Definition 3.2 An OH $f:(L_1(M_1),\delta_1)\to (L_2(M_2),\delta_2)$ is called R-irresolute at a point $e\in M_1$ if for each $P\in R\eta(f(e))$, $(f^{-1}(P))_R^-\in \eta(e)$.

Theorem 3.7 An OH $f:(L_1(M_1),\delta_1)\to (L_2(M_2),\delta_2)$ is R-irresolute iff for each point $e\in M_1$, f is R-irresolute at e.

Proof. Let f is R-irresolute, $e \in M_1$ and $P \in R_{\eta}(f(e))$. Then $f^{-1}(P)$ is regular closed in L_1 by Theorem 4.5 in [2], and then $f^{-1}(P) = (f^{-1}(P))_R$ in the light of Theorem 2.1. Since $f(e) \not \leq P$ implies that $e \not \leq f^{-1}(P)$, $(f^{-1}(P))_R \in \eta(e)$. This shows that f is R-irresolute at e. Conversely, in case f is not R-irresolute, then there is a regular closed element Q in L_2 such that $f^{-1}(Q)$ is not regular closed in L_1 . Hence $f^{-1}(Q) < (f^{-1}(Q))_R$. From Proposition 2.17 in [5] we

have a point $e \in M_1$ such that $e \not f^{-1}(Q)$ and $e \not f^{-1}(Q) = \mathbb{R}\eta(f(e))$. Therefore f is not R-irresolut at e.

Theorem3.8 An OH $f:(L_1(M_1),\delta_1)\to (L_2(M_2),\delta_2)$ is R-irresolute iff for each $A\in L_1$, $f(A_R) < (f(A))_R$.

Proof. Provided that f is R-irresolute and $A \in L_1$. In order to investigate $f(A_R) < (f(A))_R$, we only need to verify that for each point $e \in M_1$ and $e < A_R$, $f(e) < (f(A))_R$. For this purpose, in case $P \in R\eta(f(e))$, then $f^{-1}(P) = (f^{-1}(P))_R \in \eta(e)$ by Theorem 3.7. Being $e < A_R$, we have $A < f^{-1}(P)$, i.e. f(A) < P. Hence $f(e) < (f(A))_R$ by Definition 2.1. Conversely, suppose that the condition is satisfied, $e \in M_1$ and $Q \in R\eta(f(e))$. Since f(e) < Q iff $e < f^{-1}(Q)$, we have $f(((f^{-1}(Q))_R) < (ff^{-1}(Q))_R < Q_R = Q$, that is, $(f^{-1}(Q))_R < f^{-1}(Q)$. Therefore $(f^{-1}(Q))_R \in \eta(e)$. This shows that f is R-irresolute at e. Hence the sufficiency follows from Theorem 3.7.

Theorem 3.9 An OH $f:(L_1(M_1),\delta_1)\to(L_2(M_2),\delta_2)$ is R-irresolute iff for each point $e\in M_1$ and each molecular net S in L_1 which R-converges to e, f(S) R-converges to f(e) in L_2 .

Proof. Assume that f is R-irresolute, $e \in M_1$ and $P \in R\eta(f(e))$. Then $(f^{-1}(P))\overline{R} \in \eta(e)$ by Theorem 3.7. Let $S = \{S(n): n \in D\}$ be a molecular net which R-converges to e in L_1 . Then there exists $n_0 \in D$ such that $S(n) \not = (f^{-1}(P))\overline{R}$, specially, $S(n) \not = f^{-1}(P)$ as long as $n \ge n_0$ ($n \in D$). Hence $f(S) = \{f(S(n): n \in D)\}$ R-converges to f(e) by virtue of the fact that $S(n) \not = f^{-1}(P)$ implies that $f(S(n)) \not = P$. Conversely, let $A \in L_1$ and $e \not = A_R$ ($e \in M_1$). By Theorem 2.4, there exists in A a molecular net S which R-converges to e. Obviously, f(S) is a molecular net in f(A). Hence f(S) R-converges to f(e) using the condition of the theorem, and hence $f(e) \not = (f(A))_R$. This means that $f(A_R) \not = (f(A))_R$. So f is R-irresolute by Theorem 3.8.

Theorem 3.10. An OH $f:(L_1(M_1),\delta_1)\to (L_2(M_2),\delta_2)$ is R-irresolute iff for each molecular net in L_1 , $f(R-\lim S) \leq R-\lim f(S)$.

Proof. The proof follows from Theorem 2.3 and Theorem 3.9 and is omitted.

Theorem 3.11 An OH $f:(L_1(M_1),\delta_1)\to(L_2(M_2),\delta_2)$ is R-irresolute iff for each $B\in L_2$, $(f^{-1}(B))$ $\bar{R} \leq (f^{-1}(B\bar{R}))$.

Proof. If f is R-irresolute and $B \in L_2$, then $f^{-1}(B) \in L_1$ and $f((f^{-1}(B))_R) < (ff^{-1}(B))_R < B_R$, equivalently, $(f^{-1}(B))_R < f^{-1}(B_R)$ by Theorem 3.8. Conversely, if the condition is true, then for each $A \in L_1$ we have $A_R < (f^{-1}(f(A)))_R < f^{-1}((f(A))_R)$, i.e. $f(A_R) < (f(A))_R$. Hence the R-irresoluteness of f follows from Theorem 3.8.

Theorem 3.12 Let $f:(L_1(M_1),\delta_1)\to(L_2(M_2),\delta_2)$ be an OH. Then the following conditions are equivalent:

- (1) f is R-irresolute.
- (2) For each R-closed element P in L2, f-1(P) is a R-closed element in L1.
- (3) For each R-open element G in L_2 , $f^{-1}(G)$ is a R-open element in L_1 .

Proof. The equivalence between (2) and (3) is clear. Now we prove that (1) is equivalent to (2). Suppose that f is R-irresolute and that P is R-closed in L₂. Then $f^{-1}(P) = f^{-1}(P_R) > (f^{-1}(P))_R$ by Theorem 3.11. On the other hand, $f^{-1}(P) < (f^{-1}(P))_R$ follows from Theorem 2.1. Hence $f^{-1}(P)$ is R-closed in L₁. Conversely, in case (2) holds, then for each $e \in M_1$ and each $Q \in R\eta(e)$ we have $f^{-1}(P) = (f^{-1}(P))_R$. Since $f(e) \leq P$ implies that $e \leq f^{-1}(P)$, $(f^{-1}(P))_R \in \eta(e)$ by Theorem 2.1(6). This means that f is R-irresolute at e. Hence f is R-irresolute in the light of Theorem 3.7.

Analogous to proof of Theorem 3.6 we have:

Theorem 3.13 If $(L_1(M_1), \delta_1)$ is a C_1 TML, then an OH $f:(L_1(M_1), \delta_1) \to (L_2(M_2), \delta_2)$ is R-irresolute iff for each point $e \in M_1$ and each molecular sequence S in L_1 which R-converges to e, f(S) R-converges to f(e).

Acknowledgment

We wish to express our sincere thanks to Professor Wang Guo-Jun for his helpful intructions.

References

- [1]. N. Ajmal and S.K. Azad, Fuzzy almost continuity and its pointwise characterization by dual points and fuzzy nets, Fuzzy Sets and Systems, 34(1990), 81-101.
- [2]. S.L. Chen, Several order-homomorphisms on L-fuzzy topological spaces, J.Shaanxi Normal University 16 (3) (1988),15-19.
- [3]. S.L. Chen, Theory of L-fuzzy H-sets, Fuzzy Sets and Systems, 51(1) (1992), 89-94
- [4]. S.L. Chen, NS-set and its fuzzy images, Proc. FT &T'92, V01.1
- [5]. G.J. Wang, Theory of topological molecular lattices, Fuzzy Sets and Systems, 47 (1992), 351-376
- [6]. G.J. Wang, Order homomorphisms on fuzzes, Fuzzy Sets and Systems, 12 (1984) 3:281-288