On some spaces of F-numbers sequences

Xing Zhenxiang
Harbin College of Machinery
and Electrical Engineering,
Harbin 150076, P. R. China

Abstract. In this paper we introduce some spaces of sequences of fuzzy subsets on \mathbb{R}^n which are called F-numbers and show that they are complete metric space.

Keywords. Sequences of F-numbers, bounded convergent sequences of F-numbers, complete metric space.

1. Preliminaries

Let R^n denote n-dimensional Euclidean space, A and B be two nonempty bounded subsets of R^n . The distance between A and B is defined by the Hausdorff metric

 $d_{\mathbf{H}}(A, B) = \mathbf{Max} \begin{bmatrix} \sup & \inf & a-b & \sup & \inf & a-b & \end{bmatrix}$ where $\| \cdot \|$ denotes the usual Euclidean norm in \mathbb{R}^n .

Lemma 1 (see [1], theorem 2.1) Let $Q(\mathbb{R}^n)$ denote the set of all nonempty, complete subset of \mathbb{R}^n . The $(Q(\mathbb{R}^n),d_H)$ is a complete metric space.

Definition 1 A fuzzy subset $u: \mathbb{R}^n \rightarrow [0, 1]$ with the following properties

- (a) $\{x \in \mathbb{R}^n : u(x) > \alpha\}$ is compact for each $\alpha > 0$
- (b) $\{\mathbf{x} \in \mathbf{R}^{\mathbf{n}} : \mathbf{u}(\mathbf{x}) = 1\} \neq \mathbf{\varphi}$.

is called a F-number.

we denote the set of all F-numbers by Fo(Rn).

Definition 2 A sequence $x=\{x_n\}$ of F-numbers is a function x from the set N of all positive integers into $F_o\left(R^n\right)$. The F-number x_n denotes the function at $n\in N$.

Define a map d

$$F_{o}(R^{n}) \times F_{o}(R^{n}) \rightarrow R^{1}$$

by $d(u, v) = \sup_{\alpha \in \Omega} d_H(L_{\alpha}(u), L_{\alpha}(v))$

where d_{H} is the Hausdorff metric and we denote by L_{α} (u) = {x \in R^n : u(x) > \alpha}, L_{α} (v) = {x \in R^n : v(x) > \alpha}.

Lemma 2 (see [1], theorem 4.1) $(F_o(\mathbb{R}^n), d)$ is a complete metric space. We now introduce some spaces of sequences of F-numbers.

 $b = \{x = \{x_0\}: \sup_{\mathbf{n}} d(\mathbf{x}_n, 0) < \infty\}$ $c = \{x = \{x_n\}: \text{ there exists } \mathbf{x}_0 \in F_0(\mathbb{R}^n) \text{ s. t. } d(\mathbf{x}_n, 0) \rightarrow 0\}$ $c_0 = \{x = \{x_n\}: d(\mathbf{x}_n, 0) \rightarrow 0\}$ $1^p = \{x = \{x_n\}: \sum_{\mathbf{n}} [d(\mathbf{x}_n, 0)]^p < \infty\} (1 < p < \infty)$ and denote the set of all sequences of F-numbers by S.

2. Main results

Theorem 1 b is a complete metric space with the metric ρ defined by $\rho(x, y) = \sup_{n} d(x_n, y_n)$

where $x = \{x_n\}$ and $y = \{y_n\}$ are sequences of F-numbers which are in b.

Proof It is straightforward to see that ρ is a metric on b. To show that bis complete in this metric, let $\{x^i\}$ be a Cauchy sequence in b. Then for each fixed n, $\{x_n^i\}$ is a Cauchy sequence in $(F_o(R^n), d)$. But $(F_o(R^n), d)$ is complete, hence, there exsits $x_n \in F_o(R^n)$ such that $\lim_{n \to \infty} x_n^i = x_n$ for every n. Put $x = \{x_n\}$, we shall show that $\lim_{n \to \infty} x^i = x$ and $x \in b$. Since $\{x^i\}$ is a Cauchy sequence in b, given $\epsilon > 0$ there exists $n_o \in N$ such that for i, j > n_o and every $n \in N$, $d(x_n^i, x_n^j) < \epsilon$

Taking the limit as $j \rightarrow \infty$, we get $d(x_n^i, x_n) < \varepsilon$

Therefore $\rho(x^i, x) = \sup_{n} d(x_n^i, x_n) < \varepsilon$ i. e. $\lim_{n \to \infty} x^i = x$.

It remains to show $x \in b$. From $\rho(x, 0) < \rho(x^i, x) + \rho(x^i, 0) < \infty$, we get $\rho(x, 0) = \sup_{n} d(x_n, 0) < \infty$. That is to say $x = \{x_n\} \in b$ and this proves the completeness of b.

Theorem 2 c is a complete metric space with the metric ρ defined by $\rho(x, y) = \sup_{x \in \mathcal{X}} d(x_x, y_x)$

where $x=\{x_n\}$ and $y=\{y_n\}$ are sequences of F-numbers which are in c_0 .

Proof It is clear that (c, ρ) is a metric sepace. To prove the completeness of c, let $\{x^i\}$ be a Cauchy sequence in c. Repeating the proof of theorem 1, we know that there exists $x=\{x_n\}$ such that $\lim_{n\to\infty} x^i=x$. It can be shown by standard arguments that $x\in c$. So the proof is completed.

Theorem 3 c_0 is a complete metric space with the metric ρ defined in the above theorems.

Proof Be similar to the proof of theorem 2.

Theorem 4 1° is a complete metric space with the metric h defined by $h(x, y) = (\sum [d(x_n, y_n)]^p)^{1/p}$

Where $x = \{x_n\}$ and $y = \{y_n\}$ are sequences of F-numbers which are in 1^p . Proof. Obviously h(x, y) = 0 <=> x = y and h(x, y) = h(y, x).

The triangle inequality $h(x, y) \le h(x, z) + h(z, y)$ follows from Minkowski inequality

 $(\Sigma_n | a_n + b_n | p)^{1/p} < (\Sigma_n | a_n | p)^{1/p} + (\Sigma_n | b_n | p)^{1/p}$ and corresponding triangle inequality for d

 $d(x_n, y_n) \leq d(x_n, z_n) + d(z_n, y_n).$

Hence, (1°, h) is a metric space.

To show the completeness of 1^p , let $\{x^i\}$ be a Canchy suquence in 1^p . Then for every fixed n, $\{x_n^i\}$ is a Cauchy sequence in $F_0(\mathbb{R}^n)$. Since $(F_0(\mathbb{R}^n), d)$ is complete, we have $\lim_{n\to\infty} x_n^i = x_n$ for each n, put $x = \{x_n\}$, it can be proved by standard arguments that $\lim_{n\to\infty} x_n^i = x$ and $x \in 1^p$. So the proof is completed.

Theorem 5 S is a complete metric Space with the metric g defined by

$$g(x, y) = \sum_{n} \frac{1}{2^{n}} \frac{d(x_{n}, y_{n})}{1+d(x_{n}, y_{n})}$$

Where $x = \{x_n\}$ and $y = \{y_n\}$ are arbitrary sequences of F-numbers.

Proof. Obviously g(x, y) > 0, $g(x, y) = 0 \iff x = y$ and g(x, y) = g(y, x).

The triangle inequality g(x, y) < g(x, z) + g(z, y) follows from that the function x/(1+x) is monotonically increasing and corresponding inequality for d.

Hence, S is a metric space with the metric g.

To prove the completeness of S, let $\{x^i\}$ be a Cauchy Sequence in S. Then given $\epsilon>0$, there exists $n_o\in N$, such that for i, $j>n_o$

$$\sum_{n=1}^{\infty} \frac{1}{2^n} \frac{d(\mathbf{x}_{n}^1, \mathbf{x}_{n}^1)}{1 + d(\mathbf{x}_{n}^1, \mathbf{x}_{n}^1)} < \varepsilon$$

It implies that $\{x_n^i\}$ is a Cauchy sequence in $F_O(R^n)$. By the completeness of $F_O(R^n)$, there exists $x_n \in F_O(R^n)$ such that $\lim_{i \to \infty} x_n^i = x_n$ for every $n \in N$. Put $x = \{x_n\}$, it is easy to show that $\lim_{i \to \infty} x^i = x$. So the completeness of S is proved.

References

- [1] M. L. Puri and D. A. Ralescu, Fuzzy random variables, J. Math Anal, Appl 114 (1986) 409-422
- [2] M. 1. Puri and D. A. Ralescu, Differenticals for fuzzy functions, J. Math Anal. Appl 91 (1983) 552-558