Upper-Continuous And Compactly Generated Properties of Lattice of L-fuzzy Modules

M. M. Zahedi

Department of Mathematics, Kerman University Kerman, IRAN

ABSTRACT: In this note it is shown that the lattice of L-fuzzy modules of a given module is upper-continuous, and under a suitable condition it will be compactly generated.

Keywords: L-fuzzy module, upper-continuous and compactly generated lattice.

1. Introduction

Zadeh in [11] introduced the notion of a fuzzy subset A of a nonempty set X as a function from X to [0,1]. Goguen in [2] generalized the fuzzy subsets of X to L-fuzzy subsets, as a function from X to a lattice L. The concept of fuzzy modules was introduced by Negoita and Ralescu in [7]. Since then several authors have studied fuzzy modules, for example see [3,5,8,9,12]. In [13] it has been shown that the set of all L-fuzzy modules of a given module M over a commutative ring with identity R, has a modular complete, pseudo-complemented lattice

structure. Now in this paper firstly it is proved that the lattice of L-fuzzy modules is upper continuous. Then by giving a definition for L-fuzzy module generated by an element of lattice L and a submodule of M, it is given two decomposition theorems for an arbitrary L-fuzzy modules of M. And finally by using these theorems and imposing a suitable condition on L, it will be shown that the lattice of all L-fuzzy modules is compactly generated.

2. Preliminaries

In this note $L = (L, \leq, \sup, \inf)$ stands for a completely distributive lattice which has the least and greatest elements say 0 and 1 respectively. For a nonempty set X, let

 $F(X) = \{A \mid A \text{ is an } L\text{-fuzzy subset of } X\}.$

By an L-fuzzy point x_t for $x \in X$, $t \in L$ we mean $x_t \in F(X)$ which is defined by

$$x_t(y) = \begin{cases} t & \text{if } y = x \\ 0 & \text{if } y \neq x \end{cases}$$

and we write $x_i \in X$. If x_i is an L-fuzzy point of X and $x_i \subseteq A \in F(X)$, then we write $x_i \in A$. Let $y \subseteq X$, then x_y denotes the characteristic function of y, and obviously $x_y \in F(X)$.

From now on R is a ring with identity, M is an unitary R-module and all definitions and notations in this paper are follow the presentation of Zahedi [12,13].

Recall that S(M) denotes the set of all L-fuzzy modules of M.

Theorem 2.1 (See Theorem 4.1 of [13]). Let $A, B \in S(M)$. Then

- (i) $A \cap B$ is the greatest L-fuzzy module of M, contained in A and B
- (ii) A + B is the least L-fuzzy module of M, containing A and B.

Notation 2.2. Let $A, B \in S(M)$. Then by $A \wedge B$ and $A \vee B$ we mean $A \cap B$ and A + B respectively.

Theorem 2.3 (See Theorem 4.3 of [13]). (S(M), \leq , $^{\wedge}$, $_{\vee}$) is a modular complete, pseudo-complemented lattice, with the least and greatest elements $\chi_{(\Omega)}$ and $\chi_{_{\mathbf{M}}}$, respectively.

Notation 2.4 (See [4, page 2]). Let I be a nonempty set, and $x, x_i \in M$ where $i \in I$. By the summation $x = \sum_{i \in I} x_i$ we mean that all but a finite number of the x_i are zero.

Definition 2.5 (See also [4, Definition 1.1]). Let $\{A_i\}_{i\in I}$ be a family of L-fuzzy modules of M. Define the L-fuzzy subset $\sum_{i\in I} A_i$ of M by

$$(\sum_{i \in I} A_i)(x) = \sup_{x \in I} \inf_{i \in I} A_i(x_i).$$

3. Main Results

Let $\{\lambda_i\}_{i\in I}$ be a family of L-fuzzy submodules of M. Then as we saw in the proof of Theorem 4.3 of [13], $\bigcap_{i\in I} \lambda_i$

is the greatest lower bound of $\{\lambda_i\}_{i\in I}$ in S(M). Now we show that $\sum_{i\in I} \lambda_i$ is the least upper bound of $\{\lambda_i\}_{i\in I}$.

Theorem 3.1. Let $\{A_i\}_{i\in I}$ be a nonempty subset of S(M). Then $\sum_{i\in I} A_i$ is the least upper bound of $\{A_i\}_{i\in I}$ in the lattice S(M).

Proof. By considering the proof of Proposition 1.2 of [4] and doing similar to that, it is seen that $\sum_{i \in I} A_i$ is an L-fuzzy subgroup of M and $A_i \leq \sum_{i \in I} A_i$, for all $i \in I$. And it is easy to check that $(\sum_{i \in I} A_i)(0) = 1$. Now we show that

$$(\sum_{i \in I} A_i)(rx) \ge (\sum_{i \in I} A_i)(x) \text{ for all } r \in \mathbb{R}, x \in M.$$
 (1)

We have

$$(\sum_{i \in I} A_{i})(rx) = \sup_{i \in I} \inf_{x_{i}} A_{i}(x_{i})$$

$$rx = \sum_{i \in I} x_{i}$$

$$= \sup_{i \in I} rx_{i}$$

$$\lim_{i \in I} rx_{i}$$

Thus (1) is proved, and hence $(\sum_{i \in I} A_i) \in S(M)$.

Now let $B \in S(M)$ and $A_i \leq B$ for all $i \in I$. Then by using Definition 2.5, it is easy to see that $\sum_{i \in I} A_i \leq B$. Whence the proof of theorem is completed.

Recall that a complete lattice $(L_0, \leq, \land, \checkmark)$ is said to be upper-continuous if for each directed subset A of L_0 and any $a \in L_0$ we have $a \land (\bigvee_{x \in A} x) = \bigvee_{x \in A} (a \land x)$, where a subset A in Lo is said to be directed if for all $a,b \in A$ there is a $c \in A$ such that $a \leq c$ and $b \leq c$. And an element a in an upper-continuous lattice L_0 is said to be compact if for each directed subset A of L_0 such that $a \leq \bigvee_{x \in A} x \in A$ then there exists an $x_0 \in A$ such that $a \leq x_0$. An upper-continuous lattice L_0 is called compactly generated if each element of L_0 is a join of compact elements.

Lemma 3.2. Let $\{A_i\}_{i\in I}$ be a directed family of L-fuzzy modules of M. Then $\sum_{i\in I}A_i=\bigcup_{i\in I}A_i$.

Lemma 3.3. Let $\{A_i^i\}_{i\in I}$ be a subset of S(M) and $A\in S(M)$. Then

- (i) $A \cap (U A_i) = U (A \cap A_i)$ $i \in I$
- (ii) if $\{\lambda_i^i\}_{i\in I}$ is directed then $\{\lambda_i^i\cap\lambda_i^i\}_{i\in I}$ is also directed.

Theorem 3.4. S(M) is an upper continuous lattice.

Definition 3.5. Let $\lambda \in L$, and m be a submodule of M. Then by $\langle \lambda, m \rangle$ we mean an L-fuzzy module of M which is defined by

$$\langle \lambda, m \rangle(x) = \begin{cases} 1 & \text{if } x = 0 \\ \inf(\lambda, \chi_m(x)) & \text{if } x \neq 0, \end{cases}$$

and it is called the L-fuzzy module of M generated by λ and m.

Theorem 3.6 (Generated Decomposition Theorem). Let $A \in S(M)$. Then

$$A = \bigcup_{\lambda \in Im} \langle \lambda, A_{\lambda} \rangle,$$

where $A_{\lambda} = \{x \in M \mid A(x) \ge \lambda\}$ and Im A is the image of the function A.

Hereafter we let $\mathcal{S}(M)$ denotes the lattice of (ordinary) submodules of M.

Remark 3.7 (i): Let $A \in S(M)$ and $\lambda \in Im A$. Since A_{λ} is a submodule of M we get it is a union of a family of finitely generated submodules of itself, say $A_{\lambda} = \bigcup_{t \in T_{\lambda}} A_{\lambda,t}$. And as it has been shown in [6, page 45],

each of $A_{\lambda,t}$ is a compact element in $\mathcal{S}(M)$.

(ii): Let $m \subseteq M$ and $m = \bigcup_{\alpha \in \Gamma} m_{\alpha}$. Then $\chi_m = \bigcup_{\alpha \in \Gamma} \chi_{m\alpha}$, that is $\chi_m(x) = \sup_{\alpha \in \Gamma} \chi_{m\alpha}(x)$.

Now by considering Remark 3.7 we can give the following decomposition theorem.

Theorem 3.8 (Finitely Generated Decomposition Theorem). Let $A \in S(M)$, then

$$A = U \langle \lambda, A_{\lambda,t} \rangle.$$
 $\lambda \in Im A, t \in T_{\lambda}$

Theorem 3.9. Let for any indexed subset $\{a_{\alpha}\}_{\alpha\in\Lambda}$ of L, there exists an $\alpha\in\Lambda$ such that $a_{\alpha}=\sup_{\alpha\in\Lambda}a_{\alpha}$. Then S(M) is compactly generated.

Proof. By considering the definition of compactly generated lattice and Theorem 3.8, it is enough to show that each of $\langle \lambda, A_{\lambda,t} \rangle$ is compact in S(M). To this end, let $\langle \lambda, A_{\lambda,t} \rangle \subseteq \bigcup_{\alpha \in \Gamma} \mu_{\alpha}$, where $\{\mu_{\alpha}\}_{\alpha \in \Gamma}$ is a directed subset of S(M). It is easy to see that $\langle \lambda, A_{\lambda,t} \rangle_{\lambda} = A_{\lambda,t}$. Thus $A_{\lambda,t} \subseteq \bigcup_{\alpha \in \Gamma} \mu_{\alpha} \setminus A_{\lambda,t}$. Now by using the hypothesis it is seen that

$$A_{\lambda,t} \subseteq (U \mu_{\alpha})_{\lambda} = U (\mu_{\alpha})_{\lambda}.$$
 (5)

Because $\{\mu_{\alpha}\}_{\alpha\in\Gamma}$ is a directed subset of S(M), it can be concluded that $\{(\mu_{\alpha})_{\lambda}\}_{\alpha\in\Gamma}$ is a directed subset of $\mathscr{S}(M)$.

But as it was mentioned in Remark 3.7 (i), every $\mathbf{A}_{\lambda,t}$ is compact in $\mathcal{S}(\mathbf{M})$. Thus by (5) we get there exists an $\alpha_0 \in \Gamma$ such that $\mathbf{A}_{\lambda,t} \subseteq (\mu_{\alpha_0})$. This implies that $\langle \lambda, \lambda_{\lambda,t} \rangle \subseteq \mu_{\alpha_0}$, so $\langle \lambda, \lambda_{\lambda,t} \rangle$ is compact in $S(\mathbf{M})$.

REFERENCES

- [11]. Garrett Birkhoff, Lattice Theory (American Mathematical Society, Colloquium Publications, Vol. 25, 1984).
- [2]. J.A.Goguen, L-fuzy sets, J. Math. Anal. Appl. 18(1967) 146-174.
- [3]. S.R.Lopez-Permouth and D.S.Malik, On Categories of fuzzy modules, J. Information Science, 52(1990) 211-220.
- [4]. D.S.Malik and J.N.Mordeson, Fuzzy direct sums of fuzzy rings, Fuzzy Sets and Systems, 45(1992) 83-91.
- [5]. M.Mashinchi and M.M.Zahedi, On L-fuzzy Primary Submodules, Fuzzy Sets and Systems, 49(1992) 231-236.
- C.Nastasescu and F.V.Oystaeyen, Dimentions of ring theory (D.Reidel Publishing Company, Dordrecht, Holland (1987).
- [7]. C.V.Negoita and D.A.Ralescu, Applications of Fuzzy Sets to Systems Analysis (Birkhaüser, Basel, 1975).
- [8]. Fu-Zheng Pan, Fuzzy finitely generated modules, Fuzzy Sets and Systems, 21(1987) 105-113.
- [9]. Fu-Zheng Pan, Quotient modules, 'Fuzzy Sets and Systems, 28(1988) 85-90.
- [10]. Shu-ze Wang and Xi-qiang Liu, The discrete expression of fundamental theorems in fuzzy set theory, BUSEFAL No. 41(1989) 15-22.
- [11]. L.A.Zadeh, Fuzzy Sets, Information and Control, 8(1965) 338-353.
- [12]. M.M.Zahedi, On L-fuzzy residual quotient modules and P-primary submodules, Fuzzy Sets and Systems, 51 (1992) 333-344.
- [13]. M.M.Zahedi, Some result on L-fuzzy modules, Fuzzy Sets and Systems, 54(1993) to appear.