Characteristic properties of fuzzy semi-homeomorphic order-homomorphisms

Ma Bao guo

Department of Mathematics, Yanan University, Yanan 716000 china

Abstract: In this paper, first the concepts of semi-bundary-preserving, semi-interior-preserving and semi-closure-preserving ets. in a fuzzy topological space are in troduced and discusced. Then the relation among these are obtained. Finally, We discuss some semi-homeomorphic order-homomorphisms equivalent theorems.

Keywords: fuzzy semi-boundary; semi-boundary-preserving order-homomorphism; semi-homeomorphic order-homomorphism.

Throughout this paper L will denote a fuzzy latlice. Let 0, 1 denote the least element and the greatest element in L respectively. Let δ be a topology on L. Then (L, δ) is called a fuzzy topological space, or briefly fts, The elements of δ are called open elements and the elements of δ' are called closed elements, where $\delta' = \{A' \mid A \in \delta\}$. Let A^o , A^- donote the interior and the closure of A respectively. A element $B \in L$, is called a semi-open element of δ , if there exists $0 \in \delta$ such that $0 < B < 0^-$ where 0^- expresses the closure of 0. FSO(L, δ) will denote the family of all semi-open element in (L, δ). If B is semi-open element of δ then B' are called semi-closed element of δ . FSC(L, δ) will denote the family of all semi-closed element in (L, δ) (See [2]).

For each element A in L, let $A_o = \bigvee \{B \in FSO(L, \delta) \mid B \leqslant A\}$ called the semi-interior of A, and let $A_- = \bigwedge \{B \in FSC(L, \delta) \mid A \leqslant B\}$ called the semi-closure of A, and let $A_- = \bigvee \{a \in M \mid a \leqslant A_- \text{ and } a \not \leqslant A_o\}$ (See [2]) called the fuzzy semi-boundary of A.

Definition 1[2] Let $f: (L_1, \delta_1) \rightarrow (L_2, \delta_2)$ be an order

-homomorphism (see [1]). If for each $B \in FSO(L_2, \delta_2)$, $f^{-1}(B) \in FSO(L_1, \delta_1)$, then f is said to be irresolute. If for each $A \in FSO(L_1, \delta_1)$ (FSC(L_1, δ_1)), $f(A) \in FSO(L_2, \delta_2)$ (FSC(L_2, δ_2)), then f is said to be semi-open (semi-closed).

Theorem 1 [2] Let $f: (L_1, \delta_1) \rightarrow (L_2, \delta_2)$ be an order-homomorphism. Then the following conditions are equivalent:

- (1) f is irresolute,
- (2) For each $C \in FSC \, (L_{\bf 2}, \ \delta_{\, \bf 2}) \, , \ f^{\, {}_{\, \bf 1}} \, (C) \in FSC \, (L_{\bf 1}, \ \delta_{\, \bf 1}) \, ,$
- (3) For each $A \in L_1$, $f(A_-) < (f(A))_-$,
- (4) For each $B \in L_2$, $f^{-1}(B_0) \le (f^{-1}(B))_0$.

Theorem 2 [2] Let $f: (L_1, \delta_1) \rightarrow (L_2, \delta_2)$ be an order-homomorphism. Then the following conditions are equivalent:

- (1) f is irresolute,
- (2) For each $A \in L_1$, $f(A \Rightarrow) \leq (f(A))_-$,
- (3) For each $B \in L_2$, $(f^{-1}(B)) = \langle f^{-1}(B_-) \rangle$.

Theorem 3 [2] Let $f: (L_1, \delta_2) \rightarrow (L_2, \delta_2)$ be an order-homomorphism. Then the following conditions are equivalent:

- (1) f is semi-open,
- (2) For each $A \in L_1$, $f(A_0) < (f(A))_0$,
- (3) For each $A \in L_1$, $f(A_0) = (f(A_0))_0$.

Theorem 4 [2] Let $f: (L_1, \delta_1) \rightarrow (L_2, \delta_2)$ be an order-homomorphism. Then the following condition are equivalent:

- (1) f is semi-closed,
- (2) For each $A \in L_1$, $(f(A)) \le f(A_-)$,
- (3) For each $A \in L_1$, $(f(A_-))_- = f(A_-)$.

Definition 2 Let $f: (L_1, \delta_1) \rightarrow (L_2, \delta_2)$ be an order-homomorphism. Then

(1) f is said to be semi-boundary-irresolute iff for each

- $A \in L_1$, we have $f(A \Rightarrow) \leq (f(A)) \Rightarrow$,
- (2) f is said to be semi-boundary-closed iff for each $A \in L_1$, we have $(f(A)) \le f(A \le)$,
- (3) f is said to be semi-co-continuous iff for each $A{\in L_1},$ we have $(f\ (A)\)_o{<\!\!\!<}\, f\ (A_o)$.

Theorem 5 Let $f: (L_1, \delta_1) \rightarrow (L_2, \delta_2)$ be an order-homomorphism. Then

- (1) if f is semi-boundary-irresolute, then f is irresolute,
- (2) if f is semi-boundary-closed, then f is semi-closed. Proof. (1) Suppose that f is semi-boundary-irresolute. For each $A \in L_1$ it follows that $f(A \Rightarrow) \leqslant (f(A)) \Rightarrow \leqslant (f(A))$ by Definition 2 and Theorem 5 in [2]. Hence f is irresolute from Theorem 2.
- (2) Suppose that f is semi-boundary-closed. For each $A \in L_1$, it suffices to show that $(f(A))_-=f(A) \lor (f(A))_- \leqslant f(A) \lor f(A_-)=f(A) \lor A_-)=f(A_-)$ by Theorem 7 in [2] and Definition 2. Hence f is semi-closed from Theorem 4.

Theorem 6 Let $f: (L_1, \delta_1) \rightarrow (L_2, \delta_2)$ be an order-homomorphism and a bijection. Then the following statements are equivalent:

- (1) f is irresolute.
- (2) f is semi-boundary-irresolute,
- (3) f⁻¹ is semi-boundary-closed,
- (4) f⁻¹ is semi-closed.
- (5) f^{-1} is semi-open,
- (6) f is semi-co-continuous.

Proof. (1) ==> (2) For each $A \in L_1$, if A = 0, then it follows that $f(A =) \leq (f(A)) = 0$. If $A = \neq 0$, then for each $a \in [A]$. We have $a \leq A_1$ and $a \leq A_2$ hence $f(a) \leq f(A_1) \leq (f(A)) = 0$ by (1) and Theorem 1, we claim that $f(a) \leq A_2$. In fact, if not then $f(a) \leq (f(A)) = 0$, since f(A) = 0 is a bejection, f^{-1} is also an order-homomorphism and $(f^{-1})^{-1} = f(A) = 0$. Hence $(f(A)) = 0 \leq (((f(A))) = 0) = 0$ is a we have $f(a) \leq f(A_2) = 0$. This impossible $a \leq f^{-1}(f(A_2)) = A_2$, but this is impossible otherwise we know that an

order-homomorphism maps molecules into molecules so $f(a) \le (f(A)) \Rightarrow hence f(A \Rightarrow) \le (f(A)) \Rightarrow$.

- (2) ==> (3) For each $B \in L_2$ there exists $A \in L_1$ such such that B=f(A) and $A=f^{-1}(B)$. It follows that $f((f^{-1}(B))) = f(A) = f(A)$.
- (3) ==> (4) By theorem 7 in [2] and (3) for each $B \in L_2$, it follows that $f^{-1}(B) = f^{-1}(B) \vee (f^{-1}(B)) = f^{-1}$
- (4) ==> (5) By (4) and Theorem3 for each $B \in L_2$, we have $f^{-1}(B_0) = f^{-1}((B')_{-}) = (f^{-1}((B')_{-}))' \le ((f^{-1}(B')_{-}))' = ((f^{-1}(B')_{-}))' = (f^{-1}(B))_0$. This implies that f^{-1} is semi-open for Theorem 3.
- (5) ==> (6) For each $A \in L_1$, let B = f(A), then $A = f^{-1}(B)$. Hence we have $f^{-1}((f(A))_o = f^{-1}(B_o) \le (f^{-1}(B))_o = A_o$ and so $(f(A))_o \le f(A_o)$. Thus f is semi-co-continuous.
- (6) ==> (1) For each $B \in L_2$ there exists $A \in L_1$ such that B = f(A) and $A = f^{-1}(B)$, By (6) it follows that $f^{-1}(B_0) = f^{-1}((f(A))_0) \leqslant f^{-1}(f(A_0)) = A_0 = (f^{-1}(B))_0$ and hence f is irresolute by theorem 1.

Definition 3 Let $f: (L_1, \delta_1) \rightarrow (L_2, \delta_2)$ be an order-homomorphism. then

- (1) f is said to be semi-boundary-preserving iff it satisfies the condition (f(A)) == f(A=) for each A \in L₁.
- (2) f is said to be semi-interior-preserving iff it satisfies the condition $(f(A))_o=f(A_o)$ for each $A \in L_1$.
- (3) f is said to be semi-closure-preserving iff it ssatisfies the condition $(f(A))_=f(A_-)$ for each $A \in L_1$.

Theorem 7 Let $f: (L_1, \delta_1) \rightarrow (L_2, \delta_2)$ be an order-homomorphism. Then

- (1) f is semi-boundary-preserving iff it is semi-boundary-irresolute.
- (2) f is semi-interior-preserving iff it is semi-open and semi-co-continuous.
 - (3) f is semi-closure-preserving iff it is semi-colsed and

irresolute.

proof. It follows immediately from theorem 2-4, definition 3, 4.

Theorem 8 If an order-homomorphism $f: (L_1, \delta_1) \rightarrow (L_2, \delta_2)$ is semi-boundary-preserving, then f is semi-ciosure-preserving. Proof. It follows immediately from Theorem 5 and Theorem 7.

Theoem 9 Let $f: (L_1, \delta_1) \rightarrow (L_2, \delta_2)$ be an order-homomorphism and a bijection. Then

- (1) If f is semi-boundary-preserring than so is f^{-1} .
- (2) If f is semi-interior-preserring then so is f^{-1} .
- (3) If f is semi-closure-preserring then so is f^{-1} .

Proof. (1) Suppose that f is semi-boundary-preserring. Then for each $B \in L_2$. There exists $A \in L_1$, such that B = f(A) and $A = f^{-1}(B)$, so we have $f((f^{-1}(B)) =) = f(A =) = (f(A)) = B =$ and hence $(f^{-1}(B)) = f^{-1}(B =)$. Thus f^{-1} is semi-boundary-preserving.

In parallel way we can prove (2) and (3).

Definition 4 Let $f: (L_1, \delta_1) \rightarrow (L_2, \delta_2)$ be an order-homomorphism and a bijection. Then f is said to be semi-homomorphic order-homomorphism if it satisfies the condition: $A \in FSO(L_1, \delta_1)$ iff $f(A) \in FSO(L_2, \delta_2)$.

Theorem 10 Let $f: (L_1, \delta_1) \rightarrow (L_2, \delta_2)$ be an order-homomorphism, and a bijection. Then the following statement equivalent:

- (1) f is a semi-homomorphism,
- (2) Either f or f^{-1} is semi-boundary-preserving,
- (3) Either f or f^{-1} is semi-interior-preserving,
- (4) Either f or f^{-1} is semi-clousure-preserving,
- (5) Either f or f^{-1} is irresolute and Semi-open,
- (6) Either f or f⁻¹ is irresolute and Semi-closed,
- (7) Either f or f⁻¹ is semi-co-cotinuous and semi-open,
- (8) Either for f⁻¹ is semi-co-continuous and semi-closed,

- (9) Either f or f^{-1} is semi-boundary-irresolute and semi-open,
- (10) Either f or f^{-1} is semi-bounddary-irresolute and semi-closed.
 - (11) Either f or f^{-1} is irresolute and semi-boundary-closed,
- (12) Either f or f^{-1} is semi-boundary-irresolute and semi-boundary-closed,
- (13) Either f or f^{-1} is semi-co-continouns and semi-boundary-closed,
 - (14) Both f and f^{-1} are semi-open,
 - (15) Both f and f^{-1} are semi-closed,
 - (16) Both f and f⁻¹ are semi-boundary-cloused,
 - (17) Both f and f⁻¹ are semi-boundaary-irresolute,
 - (18) Both f and f^{-1} are semi-co-continuous,
- (19) Either f or f^{-1} is semi-open and the other is semi-closed,
- (20) Either f or f^{-1} is semi-open and the other is semi-boundary-closed,
- (21) Either f or f^{-1} is semi-closed and the other is semi-boundary-closed,
- (22) Eithey f or f^{-1} is irresolute and the other is semi-co-continous,
- (23) Either f or f^{-1} is irresolute and the other is semiboundary-irresolute,
- (24) Either f or f^{-1} is semi-co-continuous and the other is semi-boundary-irresolute.

Proof. The equivalence of (1) - (24) can be shown from theorem 6-9.

Reference

- [1] Wang Guo-jun. Pointwise topology on completely distributive lattices (1) (2).

 J. Shaanxi Normal university (1) (1985) 1-17; (2) (1985) 1-15 (in China).
- [2] Ma Bao-guo. Some properties of fuzzy semi-topological elements. RUSEFA, Vol 51.
- [3] Wang Guo-jun, Order-homomorphisms on fuzzes, Fuzzy sets and systems 12 (1984) 281-288.