FUZZY WEAKLY IRRESOLUTE MAPPINGS

Bai Shi-Zhong

Department of Mathematics, Yanan University, Yanan, China

ABSTRACT

In this paper, we introduce and study the fuzzy weakly irresolute mapping in fuzzy topological spaces.

Key words: Fuzzy semiopen set; fuzzy strongly semiopen set; fuzzy weakly irresolute mapping.

1. PRELIMINARIES

In this paper, A° , A^{-} , A_{\circ} , A_{-} and A' will denote respectively the interior, closure, semi-interior, semi-closure and complement of the fuzzy set A.

Definition 1.1[2]. Let A be a fuzzy set of a fuzzy topological space (X, δ) . Then A is called

- (1) a fuzzy strongly semiopen set of X iff there is a $B \in \mathcal{S}$ such that $B \leqslant A \leqslant B^{-\circ}$.
- (2) a fuzzy strongly semiclosed set of X iff there is a fuzzy closed set B in X such that $B^{\circ-} \leq A \leq B$.

Definition 1.2[2]. Let A be a fuzzy set of a fuzzy space (X, δ) . Then

 $A^{\Delta} = \bigcup \{B: B \leq A, B \text{ fuzzy strongly semiopen}\}\$

is called the fuzzy strong semi-interior of A and

 $A^{\sim} = \bigcap \{B: A \leq B, B \text{ fuzzy strongly semiclosed}\}\$

is called the fuzzy strong semi-closure of A.

Definition 1.3. Let $f:(X,\delta) \to (Y,\tau)$ be a mapping from a fuzzy space X to another fuzzy space Y, f is called

(1) a fuzzy strongly semicontinuous mapping if $f^{-1}(B)$ is a fuzzy

strongly semiopen set of X for each $B \in \tau[2]$.

- (2) a fuzzy irresolute mapping if $f^{-1}(B)$ is a fuzzy semiopen set of X for each fuzzy semiopen set B of Y[4].
- (3) a fuzzy S-irresolute mapping if $f^{-1}(B)$ is a fuzzy strongly semiopen set of X for each fuzzy strongly semiopen set B of Y[3].

2. FUZZY WEAKLY IRRESOLUTE MAPPINGS

Definition 2.1. Let $f:(X,\mathcal{E}) \to (Y,\tau)$ be a mapping from a fuzzy space X to another fuzzy space Y, f is called a fuzzy weakly irresolute mapping if $f^{-1}(B)$ is a fuzzy semiopen set of X for each fuzzy strongly semiopen set B of Y.

Definition 2.2. Let $f:(X,\delta) \to (Y,\tau)$ be a mapping from a fuzzy space X to another fuzzy space Y, f is said to be fuzzy weakly irresolute at a fuzzy point p in X, if fuzzy strongly semiopen set B of Y and $f(p) \leq B$, there exists a fuzzy semiopen set A of X such that $p \leq A$ and $f(A) \leq B$.

Theorem 2.3. Let $f: (X, \delta) \rightarrow (Y, \tau)$ be a mapping from a fuzzy space X to another fuzzy space Y. Then the following are equivalent:

- (1) f is fuzzy weakly irresolute.
- (2) $f^{-1}(B)$ is a fuzzy semiclosed set of X for each fuzzy strongly semiclosed set B of Y.
 - (3) $f(A_-) \leq (f(A))^{-}$ for each fuzzy set A of X.
 - (4) $(f^{-1}(B)) = \leqslant f^{-1}(B^{\sim})$ for each fuzzy set B of Y.
 - (5) $f^{-1}(B^{\Delta}) \leq (f^{-1}(B))_{o}$ for each fuzzy set B of Y.
 - (6) $f^{-1}(B) \leq (f^{-1}(B))^{\circ -}$ for each fuzzy strongly semiopen set B of Y.
- (7) $f^{-1}(B) \ge (f^{-1}(B))^{-\alpha}$ for each fuzzy strongly semiclosed set B of Y.
- (8) f is fuzzy weakly irresolute for each fuzzy point p in X. **Proof**. We prove only $(1) \le (8)$.
 - (1)=>(8): Let f be fuzzy weakly irresolute, p be a fuzzy point

in X and B be a fuzzy strongly semiopen set of Y such that $f(P) \leq B$. Then $p \leq f^{-1}(B)$. Let $A = f^{-1}(B)$, then A is fuzzy semiopen set of X, and so $f(A) = ff^{-1}(B) \leq B$. Thus f is fuzzy weakly irresolute for each fuzzy point p in X.

(8)=>(1): Let B be a fuzzy strongly semiopen set of Y and p be a fuzzy point in $f^{-1}(B)$. Then $p \le f^{-1}(B)$, i.e., $f(p) \le B$. From hypothesis there exists a fuzzy semiopen set A of X such that $p \le A$ and $f(A) \le B$, hence

$$p \leq A \leq f^{-1}f(A) \leq f^{-1}(B)$$

and

$$p \leq A = A_o \leq (f^{-1}(B))_o$$
.

Since p is arbitrary and $f^{-1}(B)$ is the union of all fuzzy points in $f^{-1}(B)$, $f^{-1}(B) \leq (f^{-1}(B))_o$, i.e., $f^{-1}(B)$ is a fuzzy semiopen set of X. Thus f is fuzzy weakly irresolute.

Theorem 2.4. Let $f:(X, \mathcal{S}) \to (Y, \tau)$ be one-to-one and onto, where X and Y are fuzzy spaces. f is a fuzzy weakly irresolute mapping iff $(f(A))^{\Delta} \leq f(A_{\circ})$ for each fuzzy set A of X.

Theorem 2.5. Let X_1 , X_2 , Y_1 and Y_2 be fuzzy spaces such that X_1 is product related to X_2 . Then the product $f_1 \times f_2: X_1 \times X_2 \rightarrow Y_1 \times Y_2$ of fuzzy weakly irresolute mappings $f_1: X_1 \rightarrow Y_1$ and $f_2: X_2 \rightarrow Y_2$ is fuzzy weakly irrselote.

3. MUTUAL RELATIONSHIPS

Remark 3.1. For the mapping $f: X \rightarrow Y$ the following statements are valid: f fuzzy irresolute

f fuzzy weakly irresolute=>f fuzzy semicontinuous.

f fuzzy S-irresolute

None is reversible.

Example 3.2. Let $X=\{a, b, c\}$, and A, B, C be fuzzy sets of X' defined as follows:

A(a)=0.2, A(b)=0, A(c)=0.3;

B(a)=0.5, B(b)=0.4, B(c)=0.4;

C(a)=0.5, C(b)=0.4, C(c)=0.6.

- (1) Let $\delta = \{0, A, 1\}$, and $\tau = \{0, C, 1\}$. Consider the identity mapping $f: (X, \delta) \rightarrow (X, \tau)$. Then f is fuzzy semicontinuous. But f is not fuzzy weakly irresolute.
- (2) Let $S=\{0, A, B', 1\}$ and $\tau=\{0, B, 1\}$. Consider the identity mapping $f:(X,S) \rightarrow (X,\tau)$. Then f is fuzzy weakly irresolute. But f is not fuzzy irresolute neither fuzzy S-irresolute.

Proposition 3.3. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be mappings. Then the following statements are valid:

- (1) If f is fuzzy weakly irresolute and g is fuzzy S-irresolute, then gof is fuzzy weakly irresolute.
- (2) If f is fuzzy weakly irresolute and g is fuzzy strongly semicontinuous, then gof is fuzzy semicontinuous.
- (3) If f is fuzzy irresolute and g is fuzzy weakly irresolute, then $g \circ f$ is fuzy weakly irressolute.

REFERENCES

- [1] K.K.Azad, J. Math. Anal. Appl. 82(1981)14-32.
- [2] Bai Shi-Zhong, Fuzzy Sets and Systems, 52(1992)345-351.
- [3] Bai Shi-Zhong, Fuzzy Sets and Systems, in press.
- [4] M.N.Mukherjee and S.P.Sinha, Fuzzy Sets and Systems, 29(1989)381-388.
- [5] Pu Pao-Ming and Liu Ying-Ming, J.Math.Anal.Appl.76(1980)571-599.