SUR LA CONSTRUCTION D'UNE CLASSE DE T-NORMES

I. IANCU

Université de Craiova, Faculté de Mathématiques, 13, rue A. I. Cuza, Craiova, 1100, Roumanie

Resumé. Dans cet article nous definissons un ensemble d'opérations de négations fortes avec seuil C_a , a \in (0,1), et de couples (t-norme, t-conorme) C_a -duales, donnant une extension des résultats de [5].

1. INTRODUCTION.

Nous présentons tout d'abord les définitions et quelques propriétés de t-normes, de t-conormes et de négations fortes ([2],[3]), que nous utiliserons par la suite.

<u>Définition 1.</u> L'application T:[0,1]*[0,1] \longrightarrow [0,1] est une t-norme si \forall a,b,c \in [0,1]

- (T1) T(a,b) = T(b,a)
- (T2) $T(a,b) \leq T(a,c)$ si $b \leq c$
- (T3) T(a,T(b,c)) = T(T(a,b),c)
- (T4) T(a,1) = a.

Une t-norme T est archimédienne si

- (T5) T est continue
- (T6) $T(a,a) < a, \forall a \in (0,1).$

Une t-norme archimédienne est stricte si

(T7) T(a',b') < T(a,b) si a'<a et b'<b \forall a,a',b,b' \in (0,1).

<u>Définition 2.</u> L'application S:[0,1]*[0,1] ——> [0,1] est une t-conorme si \forall a,b,c \in [0,1]

(S1) S(a,b) = S(b,a)

- (S2) $S(a,b) \leqslant S(a,c)$ si $b \leqslant c$
- (S3) S(a,S(b,c)) = S(S(a,b),c)
- (S4) S(a,0) = a.

Une t-conorme S est archimédienne si

- (S5) S est continue
- (S6) $S(a,a) > a \forall a \in (0,1)$.

Une t-conorme archimédienne est stricte si

 $(S7) S(a',b') < S(a,b) si a' < a et b' < b <math>\forall a,a',b,b' \in (0,1)$.

Pour toute t-norme T et t-conorme S nous avons

$$T(0,0)=0$$
 $T(1,1)=1$
 $S(0,0)=0$ $S(1,1)=1$.

Ling ([4]) a démontré que toute t-norme archimédienne peut s'écrire

$$T(a,b) = f^{(-1)}(f(a) + f(b))$$
 (1)

où $f:[0,1] \longrightarrow [0,\infty)$ est une fonction continue et strictement décroissante et $f^{(-1)}$ est la pseudo-inverse de f,

$$f^{(-1)}(a) = \begin{cases} 1 & \text{si } a \in [0, f(1)] \\ f^{-1}(a) & \text{si } a \in [f(1), f(0)] \\ 0 & \text{si } a \in [f(0), \infty). \end{cases}$$
 (2)

Analogue, toute t-conorme archimédienne peut s'écrire

$$S(a,b) = g^{(-1)}(g(a) + g(b))$$
 (3)

où g:[0,1] \longrightarrow $[0, \infty)$ est une fonction continue et strictement croissante et

$$g^{(-1)}(a) = \begin{cases} 0 & \text{si } a \in [0, g(0)] \\ g^{-1}(a) & \text{si } a \in [g(0), g(1)] \\ 1 & \text{si } a \in [g(1), \infty). \end{cases}$$

On sait ([7]) que pour toute t-norme T on a $T_{w}(a,b) \leqslant T(a,b) \leqslant \min(a,b), \text{ où}$

$$T_{\mathbf{W}}(\mathbf{a},\mathbf{b}) = \begin{cases} \mathbf{a} & \text{si } \mathbf{b} = 1 \\ \mathbf{b} & \text{si } \mathbf{a} = 1 \\ \mathbf{0} & \text{si non.} \end{cases}$$

Analogue, toute t-conorme S satisfait

$$\max(a,b) \leq S(a,b) \leq S_{\mathbf{w}}(a,b)$$
, où

$$S_{W}(a,b) = \begin{cases} a & sib = 0 \\ b & sia = 0 \\ 1 & sinon. \end{cases}$$

<u>Définition</u> 3. L'application C:[0,1] ----> [0,1] est une négation forte ([6]) si

- (C1) C(0) = 1
- (C2) C(C(a)) = a
- (C3) $C(a) < C(b) \forall a,b \in [0,1], a > b$
- (C4) C est continue.

Trillas ([8]) a montré que toute négation forte peut s'écrire $C(a) = t^{-1}(t(1) - t(a))$ (4)

où t:[0,1] —> $[0,\infty)$ est une fonction continue et strictement croissante avec t(0) = 0 et t(1) finit. Si T est une t-norme et C est une négation forte, alors S(a,b) = C(T(C(a), C(b))) est une t-conorme et réciproquement T(a,b) = C(S(C(a),C(b))), c'est-à-dire S et T sont C-duaux l'un de l'autre ([1]).

2. AUTRE DÉFINITION DE T-NORMES ET DE NÉGATIONS

Nous travaillerons avec des classes de t-normes, t-conormes et négations fortes plus amples que celles données par (1) - (3). Proposition 1. Soit $I \subseteq [0, \infty)$, $f:[0,1] \longrightarrow I$ une fonction strictement décroissante et $\Delta:I*I \longrightarrow I$ avec les propriétés $(5.1) \Delta(a,b) = \Delta(b,a)$

- $(5.2) \Delta(a,\Delta(b,c)) = \Delta(\Delta(a,b),c)$
- (5.3) ∆(a,b) ≤ ∆(a,c) si b ≤ c, avec égalité si et seulement si b
 = c
- $(5.4) \triangle$ est continue
- (5.5) il existe et il est unique $e \in I$ telle que $\Delta(a,e) = a$
- (5.6) f(1) = e

pour tout a,b,c ∈ I. Alors,

$$T(a,b) = f^{(-1)}(\Delta(f(a),f(b))) \quad a,b \in [0,1]$$
 (6)

est une t-norme stricte, où $f^{(-1)}$ est la pseudo-inverse de f.

<u>Démonstration</u>. On vérifie les conditions (T1) -(T7).■

Exemple 1. Pour $k \in \mathbb{R}$, $k \ge 0$, $I = [k, \infty)$, $\Delta(a,b) = a + b - k$ nous avons la t-norme $T(a,b) = f^{(-1)}(f(a) + f(b) - k)$; pour $f(x) = -k \cdot x + 2 \cdot k$ on retrouve la t-norme T(a,b) = max(a + b - 1, 0).

Exemple 2. Pour I = $[0,\infty)$, $\Delta(a,b) = a + b + a \cdot b$, f(x) = -x + 1 on trouve la t-norme $T(a,b) = max(2 \cdot a + 2 \cdot b - a \cdot b - 2, 0)$.

<u>Proposition 2.</u> Soit $I \subseteq \mathbb{R}$ et l'application $\Delta:I * I \longrightarrow I$ qui satisfait les conditions suivantes pour tout $a,b,c \in I$:

- (6.1) (6.4), identiques avec (5.1) (5.4)
- (6.5) il existe et il est unique $e \in I$, $e \geqslant 0$ telle que $\Delta(a,e) = a$, $\forall a \in I$
- (6.6) \forall a \in I il existe et il est unique a' \in I telle que \triangle (a,a') = e et la fonction φ : I > I , φ (a) = a' est continue et strictement décroissante.
- (6.7) soit $J = [e, \infty) \subset I$ et $t:[0,1] \longrightarrow J$ une fonction continue, strictement croissante avec $t(0) = \varphi(e) = e$ et t(1) finit.

Alors $C(a) = t^{-1}(\Delta(t(1), \varphi(t(a))))$ est une négation forte pour tout $a \in [0,1]$.

<u>Démonstration</u>. Elle est immédiate tenant compte de règles de calcul dans un groupe. Par exemple, pour démontrer (C2) nous utilisons le fait que $\Delta(a, \varphi(\Delta(a, \varphi(b)))) = b$, $\forall a, b \in I$

Exemple 3. Pour I = \mathbb{R} , $\Delta(a,b) = a + b - 1$, e = 1, $J = [1, \infty)$, $\varphi(a) = 2 - a$, $t(a) = (2 \cdot a + 1) / (a + 1)$ on aurait $C(a) = (1 - a) / (1 + 3 \cdot a)$.

3. T-NORMES AVEC SEUIL.

Nous restons dans les conditions de la proposition 2 et notons $\Delta(a,b) = a \oplus b$. Considérons $\otimes: I * I \longrightarrow I$ avec les propriétés suivantes:

- i) $a \otimes b < a \otimes c$ si et seulement si b < c $\forall a,b,c \in I$ et a > e
- ii) (I, \oplus, \otimes) est un corps.

Notons par $\varphi(a)$ et $\frac{1}{a}$ l'élément symétrique de a correspondant à l'opération \oplus et respectivement \otimes . Pour la simplification de l'écriture notons a $\otimes \frac{1}{c} = \frac{a}{c}$.

Proposition 3. Soit a ∈ (0,1) et

$$C_{a}(x) = \begin{cases} t^{-1}(t(1) \oplus \varphi(\underline{t(1)} \oplus \varphi(t(a)) \otimes t(x))), & \text{si } x \leq a \\ \\ t^{-1}((t(1) \oplus \varphi(t(x))) \otimes \underline{t(a)} \\ \\ \hline t(1) \oplus \varphi(t(a)) \end{cases}, & \text{si } x \geq a.$$

Alors C_a est une négation forte telle que $C_a(a) = a$.

<u>Démonstration</u>. On montre avant tout que

- i) $x \le a$ si et seulement si $C_a(x) \ge a$
- ii) $x \geqslant a$ si et seulement si $C_a(x) \leqslant a$

et puis on utilise les opérations de calcul dans un corps.

Observation. La relation ii) dit que si x est une mesure de confiance dans un fait p, a est un seuil commençant avec qui la

confiance dans non p est plus petite que le seuil. Cette propriété suggère le nom de négation avec seuil.

Proposition 4. Soit (T,S) un couple (t-norme, t-conorme) C-duaux, où C(a) = $t^{-1}(t(1) \oplus \varphi(t(a)))$. Alors,

$$C_a(S(C_a(x), C_a(y))) =$$

$$= t^{-1} \left(\frac{1}{\alpha} \otimes t(T(t^{-1}(\alpha \otimes t(x)), t^{-1}(\alpha \otimes t(y)))) \right)$$

pour $x \le a$, $y \le a$ et $\alpha = \frac{t(1) \oplus \varphi(t(a))}{t(a)}$.

<u>Démonstration</u>. Nous avons S(x,y) = C(T(C(x),C(y))) =

$$= \operatorname{t}^{-1}(\operatorname{t}(1) \, \oplus \, \varphi(\operatorname{t}(\operatorname{T}(\operatorname{t}^{-1}(\operatorname{t}(1) \, \oplus \, \varphi(\operatorname{t}(\operatorname{x}))), \, \operatorname{t}^{-1}(\operatorname{t}(1) \, \oplus \, \varphi(\operatorname{t}(\operatorname{y}))))))).$$

De plus,
$$C_a(x) \geqslant a$$
, $C_a(y) \geqslant a$ et $S(C_a(x), C_a(y)) \geqslant$

 $\max(C_a(x), C_a(y)) \geqslant a$. Tenant compte de ces relations et des règles de calcul dans un corps nous avons

$$C_a(s(C_a(x), C_a(y))) =$$

$$= t^{-1} \left(\frac{t(a)}{t(1) \oplus \varphi(t(a))} \otimes (t(1) \oplus \varphi(t(S(C_a(x), C_a(y))))) \right)$$

$$= t^{-1} \left(\frac{t(a)}{t(1) \oplus \varphi(t(a))} \otimes t(T(t^{-1}(t(1) \oplus \varphi(t(C_a(x))))), \right.$$

 $t^{-1}(t(1) \oplus \varphi(t(C_a(y))))))$. Remplaçant $C_a(x)$ et $C_a(y)$ par l'expression donnée par la proposition 3 nous obtenons la relation de l'énoncé.

Proposition 5. Soit $a \in (0,1)$ et (T,S) un couple (t-norme, t-conorme) C-duaux, où $C(a) = t^{-1}(t(1) \oplus \varphi(t(a)))$. Alors,

$$T_{a}(x,y) = \begin{cases} t^{-1}(\frac{1}{\alpha} \otimes t(T(t^{-1}(\alpha \otimes t(x)), t^{-1}(\alpha \otimes t(y))))) \\ & \text{si } x \leq a \text{ et } y \leq a \end{cases}$$

$$\min(x,y) \qquad \qquad \text{si } x > a \text{ ou } y > a$$

est une t-norme; α a la même signification comme dans la

proposition antérieure.

Démonstration. Soit

$$s_{a}(x,y) = \begin{cases} s(x,y) & \text{si } x > a \text{ et } y > a \\ \\ max(x,y) & \text{si } x < a \text{ ou } y < a \end{cases}$$

Tenant compte que S_a est une t-conorme ([6]), que max et min sont C_a -duaux (il est très facile de montrer) et utilisant la proposition 4 il résulte que T_a est une t-norme et que T_a et S_a sont C_a -duaux.

Observation 2. Toutes les remarques faites dans [5] sur les propriétés et l'utilité de C_a , T_a et S_a se conservent dans notre cas.

Exemple 4. Considérons $\oplus = +$, $\otimes = \cdot$, $t(x) = 2 \cdot x / (1 + x)$, $T(x,y) = x \cdot y$, $S(x,y) = (x + y + 2 \cdot x \cdot y) / (1 + 3 \cdot x \cdot y)$, $C(x) = (1 - x) / (1 + 3 \cdot x)$ et obtenons

$$T_{a}(x,y) = \begin{cases} a \cdot (1-a) \cdot x \cdot y / (2 \cdot a^{2} + 3 \cdot a^{2} \cdot x + 3 \cdot a^{2} \cdot y - a \cdot x - a \cdot y \\ + x \cdot y \cdot (6 \cdot a^{2} - 5 \cdot a + 1)) & \text{si } x \leqslant a \text{ et } y \leqslant a \\ \min(x,y) & \text{si } x > a \text{ ou } y > a \end{cases}$$

$$s_{a}(x,y) = \begin{cases} (x + y + 2 \cdot x \cdot y) / (1 + 3 \cdot x \cdot y) & \text{si } x \ge a \text{ et } y \ge a \\ \max(x,y) & \text{si } x < a \text{ ou } y < a \end{cases}$$

$$C_a(x) = \begin{cases} (2 \cdot a \cdot x + a - x) / (a + x) & \text{si } x \leq a \\ a \cdot (1 - x) / (1 + x - 2 \cdot a) & \text{si } x \geq a \end{cases}$$

<u>Conclusions.</u> Les propositions 3-5 posent à notre disposition un ensemble de négations fortes et de couples (t-norme, t-conorme) C_a -duaux plus large que celui donné dans [5]. Prenant t(x) = x et remplaçant les opérations \oplus et \otimes par la somme et la multiplication de $\mathbb R$ nous obtenons les résultats de [5].

Utilisant les idées de [5], les opérateurs donnés de notre ensamble peuvent être utilisés pour gérer l'incertitude dans une base de connaisances composée par des faits et des règles.

Références.

- [1] C. Alsina, E. Trillas, L. Valverde On non-distributive logical connectives for fuzzy sets theory.BUSEFAL $n^{\circ}3(1980)$, LSI, Univ. P. Sabatier, Toulouse, 18-29.
- [2] D. Dubois Modèles Mathématiques de l'Imprécis et de l'Incertain en Vue d'Applications aux Techniques d'Aide à la Décision. Thèse d'Etat(1983), Univ. Scientifique et Médicale, Grenoble.
- [3] M. M. Gupta , J. Qi Theory of T-norms and fuzzy inference methods. Fuzzy Sets and Systems 40(1991),431-450.
- [4] C. H. Ling Representation of associative functions. Publ. Math. Debrecen 12(1965), 189-212.
- [5] D. Pacholczyk Introduction d'un seuil dans le calcul de l'incertitude en logique floue. BUSEFAL $n^{\circ}32(1987)$, LSI, Univ. P. Sabatier, Toulouse, 11-18.
- [6] H. Prade Modèles Mathématiques de l'Imprécis et de l'Incertain en Vue d'Applications en Raisonnement Naturel. Thèse d'Etat (1982), Univ. P. Sabatier, Toulouse.
- [7] B. Schweizer, A. Sklar Statistical Metric Spaces. Pacific J. Math. 10(1960),313-334.
- [8] E. Trillas Sobre funciones de negacion en la teoria de conjuntos difusos. Stochastica, vol III, $n^{\circ}1(1979)$, 47-59.