TOPOLOGICAL APPROACH TO ROUGH SETS.

(Nicola Umberto ANIMOBONO, C.P. 2099, I-00100 Roma Ad. Italy)

The rough sets, introduced by Pawlak [1] ten years ago, are defined [2] by using a family of equivalence relations (its intersection is called "indiscernibility" relation). Equivalently here the rough sets are defined by means of an \propto -discrete topological.

Keywords: rough set, &-discrete topologic, generalized rough set, rough topologic

1. Introduction.[2]

Let $U \neq \emptyset$ be an universal set and R an equivalence relation on U.

 $X\subseteq U$ is "R-definable" or "R-exact" set if X is the union of some R-equivalence classes (X = $\bigcup_{x\in X} [x]_R$); else: X is "R-ingreduction of the some R-equivalence classes (X = $\bigcup_{x\in X} [x]_R$); else: X is "R-ingreduction of the some R-equivalence classes (X = $\bigcup_{x\in X} [x]_R$); else: X is "R-ingreduction of the some R-equivalence classes (X = $\bigcup_{x\in X} [x]_R$); else: X is "R-ingreduction of the some R-equivalence classes (X = $\bigcup_{x\in X} [x]_R$); else: X is "R-ingreduction of the some R-equivalence classes (X = $\bigcup_{x\in X} [x]_R$); else: X is "R-ingreduction of the some R-equivalence classes (X = $\bigcup_{x\in X} [x]_R$); else: X is "R-ingreduction of the some R-equivalence classes (X = $\bigcup_{x\in X} [x]_R$); else: X is "R-ingreduction of the some R-equivalence classes (X = $\bigcup_{x\in X} [x]_R$); else: X is "R-ingreduction of the some R-equivalence classes (X = $\bigcup_{x\in X} [x]_R$); else: X is "R-ingreduction of the some R-equivalence classes (X = $\bigcup_{x\in X} [x]_R$); else: X is "R-ingreduction of the some R-equivalence classes (X = $\bigcup_{x\in X} [x]_R$); else: X is "R-ingreduction of the some R-equivalence classes (X = $\bigcup_{x\in X} [x]_R$); else: X is "R-ingreduction of the some R-equivalence classes (X = $\bigcup_{x\in X} [x]_R$); else: X is "R-ingreduction of the some R-equivalence classes (X = $\bigcup_{x\in X} [x]_R$); else: X is "R-ingreduction of the some R-equivalence classes (X = $\bigcup_{x\in X} [x]_R$); else: X is "R-ingreduction of the some R-equivalence classes (X = $\bigcup_{x\in X} [x]_R$); else: X is "R-ingreduction of the some R-equivalence classes (X = $\bigcup_{x\in X} [x]_R$); else: X is "R-ingreduction of the some R-equivalence classes (X = $\bigcup_{x\in X} [x]_R$); else: X is "R-ingreduction of the some R-equivalence classes (X = $\bigcup_{x\in X} [x]_R$); else: X is "R-ingreduction of the some R-equivalence classes (X = $\bigcup_{x\in X} [x]_R$);

definable" or "R-rough" set.

If $K = \{R_i\}_{i \in I}$ is a family of equivalence relations on U, $R = \bigcap_{i \in I} R_i \text{ is also an equivalence relation, denoted by } IND(K)$ and called "indiscernibility" relation on K (and it is $[x]_{IND(K)} = \bigcap_{i \in I} [x]_{R_i}$).

 $X\subseteq U$ is "exact" set in K when there is a $R_1\in K$ such that X is R_1 -exact set and X is "rough" set in K when for any $R_1\in K$ X is R_1 -rough set.

2. <u>≪-diserete topelogies.</u>

(cardinality of A set denoted by # A)

Let X be a set and $\mathcal{O}(X)$ the totality of its subsets (power set of X). The couple $(X, \mathcal{O}(X))$ is called "discrete" topologies of X.

Proposition 1.

Let (X, \mathcal{C}) be a topological space and \mathcal{O} the its closed set family.

If $\mathcal{T}=\mathcal{T}$ (i.e. any open set is closed also, and versavice), then (X,\mathcal{T}) is homeomorfic to $(Y,\mathcal{T}(Y))$ for some Y set, and \mathcal{T} is called "X-discrete" topologie where it's $X=\{Y\}$.

Proof. $\forall x \in X$, let $\mathcal{H}_X = \{A \in \mathcal{T} \mid A \ni X\}$ be and $A_X = A \in \mathcal{H}_X$. It results: $\forall y \in A_X$ it's $A_y = A_X$. Let $X \approx y := A_X = A_Y$ be: this is an equivalent relation; $\{X\}_{X \in X}$ is a base for \mathcal{T} and a partition of X. $Y = X/\infty$ complete the proof.

Corellary 1.

Any partition mof X is a base for a # m -discrete topological called "associated" to m.

Corollary 2.

The α -discrete topological spaces (X, \mathcal{C}) , with $\alpha < \# X$, are not To; they have one only base and their base-open are the connected components and quasicomponents [3].

Examples.

Let 2, Q, R be the integer, rational, real number set resp. and $\begin{bmatrix} y,s \end{bmatrix} = \{x \in \mathbb{R} \mid y \leq x \leq s\}$ $\exists y,s \end{bmatrix} = \{x \in \mathbb{R} \mid y \leq x \leq s\}$.

a)
$$\left\{ \left[j, j+1 \right] \right\} j \in \mathbb{Z}$$

b)
$$\{[2j,2j+2]\}_{j \in \mathbb{Z}}$$

•)
$$\{[2j+1,2j+3]\}_{j \in \mathbb{Z}}$$

4)
$$\left\{ \int \mathbf{p}, \mathbf{q} \right\}_{\mathbf{p}, \mathbf{q} \in \mathbf{Q}}$$

a), b), e) are bases for %,-discrete topologies (all homeomerfie) and d) is a base for suclidean real topology.

3. Rough sets.

It's well-know that partitions and equivalence relations are mutually intercheangeables.

Let \mathcal{R} be a family of equivalence relations on U. Let $\{R_i\}_{i\in I} \subseteq \mathcal{R}$ be a subfamily of \mathcal{R} . Let \mathcal{H}_R be the partition associated to $R = \bigcap_{i\in I} R_i$ and i the $\{R_i\}_{R}$ -discrete topology associated to \mathcal{H}_R of R. Let $S\subseteq U$. It's straightforward:

Proposition 2.

S is exact set iff $S \in \mathcal{C}$; etherwise S is rough set.

We can assume this propriety as

Definition 1.

SCU is exact set iff Set;

S⊆U is yough set iff S∈ ~.

4. Generalized rough sets.

Let $\varrho = \{S \subseteq U \mid S \notin \mathcal{C}\}$ be the family of rough sets on U. If U, \cap and \mathcal{C} are the union, intersection and complementation (exisp) set—theoretic operators resp., ϱ is closed for \mathcal{C} , but ϱ is not closed for U and \cap .

Definition 2.

Let (U, γ) be an α -discrete topological space and $S \subseteq U$. The triplet $(S, \tilde{S}, \overline{S})$ is called "generalised rough set" S. (\tilde{S} is the interior and \overline{S} the closure of S for γ').

Corollary 3.

SCU is exact set iff $S = \tilde{S} = \overline{S}$; else S is rough set iff $\tilde{S} \subset S \subset \overline{S}$.

5. Rough topologies.

Definition 3. $\{ \varphi, \phi, \mathcal{U} \}$ Let $\varphi \subset \varrho$ be such that φ is closed for U and finite \cap . The family $\{ \varphi, \phi, \mathcal{U} \}$ is called <u>rough topology</u> on U.

The examples of sect.2 say that this is a good definition.

6. References.

- [1] PAWLAK, Z. Rough sets <u>I.J.Inf.Comp.Se.</u> 11 (1982), 341-356
- [2] PAWLAK, Z. ROUGH SETS. Theoretical Aspects of Reasoning about Data (1991), Kluwer A.P.
- 3 WILLARD, S. General Topology (1970), Addison-Wesley P.C.