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Abstract

In this paper we will establish a new kind of neural networks, Decision-Support Neural Networks (DSNN)
based on truth value flow inference(TVFI)[2I5], approximate reasoning based on similarity theoryl®], neural
networks knowledgel7)(8], and possibility theoryl%). As a succeeding work of “stock selection strategy using fuzzy
neural networks™!], in this paper we also apply this neural networks in financial forecast. As a decision making
tool, this neural networks actually can be used in many decision-making fields.

1. Building the Decision-Support Neural Networks(DSNN):

First we give out the diagram of this neural networks (Fig.-1), then we further illustrate its meaning in
detail. For convenience, we call this neural networks the Decision-Support Neural Networks (DSNN). And in order
to write clearly, we give every layer a name. From input layer to output layer, they are “Factor Layer”, “Predicate
Layer”, “Rule Layer”, “Evaluation Layer” and “Decision Layer” respectively as shown in the Fig.-1.

. In the Decision-Support Neural Networks (DSNN), the factor (input) layer represents the 12 accounting
items that is used in the evaluation of stocks. The symbols used in the factor layer are INITIALs of the following
12 accounting items respectively.

1. Issued Capital (IC); 2. Price (P);

3. Market Capitalization (MC); 4. Earnings Per Share (EPS);

5. Price Earnings Ratio (PER); 6. Dividend Yield (EY)

7. Dividend Yield (DY), 8. Net Asset Backing (NAB);

9. Debt-Equity Ratio (DER); 10. Dividend Times Covered (DTC);
11. Return on Shareholders Equity (RSE);, 12. Turmover Growth Rate (TGR).

The predicate layer consists of 60 fuzzy predicates which are distributed in 12 different factor-spaces. For
example, for factor PER, its factor-space is ! ; } } 4 } >
the Real line (Fig.-2) and the five fuzzy : 40 50
predicates distributed in this factor-space |© 0 20 30
have the representations shown in Fig.-3. Fig. 2
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The evaluation layer is ‘the fourth

layer, in this paper we use five fuzzy quantifiers as evaluation values, they are “very good(VG)”, “good(G)”,
“average(A)”, “bad(B)”, “very bad(VB)”.

The decision layer is the output layer, in this layer three decision strategies “buy”, “hold”, and “sell” form

the strategy set.
Now we define all the weights in the DSNN.

The weights between the factor layer and the predicate layer are defined by the following rules:

Each node (i.e. each factor) in the factor layer connects to the five nodes (i.e. five predicates) in the
predicate layer which are distributed in its factor-space by weights 1, and connects to the other nodes by weights 0.
For example, factor IC only connects to those nodes which are distributed in its factor-space as shown in Fig.-1.







The weights between the predicate layer and the rule layer are defined by the following rules:

Because each node in the rule layer represents a rule, so each node (rule) in the rule layer only connects‘to
those nodes (predicates) in the predicate layer which are related with this rule. Moreover, as inputs of a logic neural
networks, these predicates connecting with the rule should be indicated in some sequence. So we use numbers {1, 2,
3, ...} as weights to denote the sequence of inputs. For those not connecting nodes, using 0 as their weights. For
example, for Rule-1, we may have the weights shown in Fig.-4.

The meaning of the Fig.-4 depends on the internal
structure of rule-1.

The weights between the rule layer and evaluation layer
are defined by the following rules:

For each rule, its seccedent is an evaluation “very good”,
“good”, etc.. So each node (rule) in the rule layer connects to
the node in the evaluation layer which is the seccedent of this
rule by weight 1, and connects to the other nodes by weights 0.
Fig. 4 Further more, we can use possibility distribution in evaluation
) set {“very good”, “good”, “average”, “bad”, “very bad”} as a
seccedent of rule. In this case, each node (rule) in the rule layer connects to the nodes in the evaluation layer with
the weight values obtained from possibility distribution functions. For example, for Rule-1, suppose its seccedent is
the possibility distribution function
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very good ~ good ’ average ’ bad ’ very bad
then we can establish the weights between Rule-1 and all the nodes in the evaluation layer as shown in Fig.-5.

The weights between the evaluation layer and the decision (output)
layer is determined by experts ascording to their experiences. These
weights can be modified when neural networks be training. For
example, in the financial forecast field, we can use the weights in Fig.-6
as the initial weights.

Fig. 5

So far we have built up the Decision-
Support Neural Networks(DSNN)
completely. In the following several
sections, we will discuss the
implementation of this neural networks,
its learning capacity, the implementation
of logic operations through networks,
etc..

2. Implementation of DSNN:

In the input layer we input the values which indicate the states of all accounting items, and in the predicate
layer these values are transferred to truth values through fuzzy predicates “very high”, “high”, “average”, “low”,
“very low”, and these truth values are output as the outputs of predicate layer. The fuzzy set representations of the
three fuzzy predicates and transferring process of truth values in the predicate layer can be shown in the Fig.-7.
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These three membership functions are the transfer functions in nodes H, A, and L respectively. The inputs are state
values of items, and the outputs are truth values obtained from corespondent fuzzy membership function.

In the rule layer, each node represents the antecedent of a rule, and an antecedent is a combination of
propositions trough logic operations, therefore each node in the rule layer is a logic combination of propositions.
For example, if the rule is “if A and B both true, then C is true”, then the node is prepositional combination formula
A A B; similarly, if the rule is “if A or B is true, and A and B can not be true at the same time, then C is true”, then
the node is logic formula (A v B) A —(A A B). About what kind of the transfer functions we should take in the
third layer and how to implement logic formulae by these transfer functions, we will discuss this problem in the
section 4. There we will establish a new kind of function form, logic neural network function, to implement all
forms of logic formulae. The outputs in the third layer are also logic truth values. In this layer, the transfer
functions are logic neural networks, and the input values are obtained from formula

I; =sgn(W;;)O;
the meanings of all symbols in this formula are stated in later part.

In the evaluation layer, the inputs are truth value which are output from rule layer, and its outputs are also
truth values which are obtained by combination of all inputs from previous layer. This combination can be any one

of the logic operations, such as min, product, boundary-product, etc..

In the output layer, the inputs and outputs are all logic truth

1+ values, and translation function is also any one of the logic
0.8+ operations, such as min, product, boundary-product, etc. In the
0.61 output layer, all the outputs can form a possibility distribution
function on the strategy set, this distribution function is just the

047 basis of decision-making. According to this function, the action we
0.2+ l should take is the one that has the maximum value in the
distribution function. In the financial forecast field, if we choose

buy hold sell {buy, hold, sell} as the strategy set, then the possibility distribution

Fig. 8 has the representation shown in Fig.-8, and according to this

function we should take action “hold”.

3. Learning of Membership Functions:

In this section, we will discuss the learning of fuzzy rules. The essential problem of leaming fuzzy rules is
learning fuzzy membership functions, and the essential problem of learning fuzzy membership functions is to set up
a reasonable mathematical methods to modify membership function when the membership function is changed at
one point. In the following, we will discuss the methods of modifying membership functions.

The general criteria of modifying membership functions:

® Modifying radius is positive proportional with the membership degree and the error ; :

@ Considering left wing, right wing and median part (the set which have membership degree 1) separately.

@ Modified membership function should also be normal.

Using mathematical method, the above general criteria can be described as follows:
Definition: A normal fuzzy set Aisa fuzzy set on the real line that satisfies:
(1) exist at least one point ug € U such that A(uo) =1,

(2) as a function on the real line, Ais increasing on (—oo,u, ], and is decreasing on [ug,+ <0).



Before we continue our discussion, we first give several notations:

3N (U) denotes the set of all normal fuzzy sets on the universe U, where U is a subset of the real line.
m~ éinf{ul]\(u) = 1}: m* ésup{u |A(u)= 1}, A 4 (coom ], A*A[m*,+), A & [m~,m*].

Ax é{x IxeU, A(x) 2 l}, and is called A-cut set of A. In the case of A is normal, A;h is an interval,

and we denote ;\x =[a;, a{], where A €[0,1].

p:[0,1]x[0,1] = [0,+ <) is an increasing function with regard to its two variables respectively, and
satisfies p(y,0) =0 for any y € [0,1].

M:[0,+o0) = Z*={1,2,3,+--+- } is an increasing function.

%(u) denotes any one neighbor of u in U, and U(u,r) denotes the neighbor of u with radius r, Y™ (u,r)

denotes the left half-neighbor of u with radius r, and %* (u,r) denotes the right half-neighbor of u with radius r.
They can be defined by the following formulae.

U(u,r1) a {xlxeU,|x—u|< r}’
U (u,r) 4 {xlxeU,0£(u-x) Sr},

U (u,r) 4 {xIxeU,0<s(x-uw)<r}
Definition: The bound pair function bnd on the real line R with o as the lower bound and with B as the
upper bound is defined as follows:
o ifx<ao;
bnd(x)P 4B if x>B;
x else.
In particular, bnd (1) (.) represents the bounded function which has the lower bound 0, and upper bound 1;
bnd_i(.) represents the bounded function which has the lower bound -1 and upper bound 1; etc. In order to

simplicity, we usually use the concise form bnd() to represent bnd %) ).
Using u to denote the adjusted point, we will discuss the modifying membership function problem in three
cases, ue A, ue At andueA.

® Cascofue A™.
Definition: Define mapping ® as follows:
@: Fy (U) x U x[4,1] &y (U)

(A, U,S) - A(U,S)

where A(u’a) is defined as follows:

r&‘ (A, u,8)(x) x<u;
E*(A,u,8)(x) u<x<m~;

Aws® 2 {e(A,0,8)x) m™ <x <(m™+6(A, K));
CH(A,u,8)(x) (m~+0(A,k))<x<T;
\A(x) else.

where T=m"+0(A,x)+p(A(m™ +6(A,K)),1-A(m +6(A,x))), xk=1-E"(A,u,8)(m"), and
other functions are defined respectively by the following formulae.



8(A, k): iy (U) X[0,1] 1 [0, +e0)
is any one of the increasing functions with respect to x when Ais fixed, and satisfies the condition: 8(A,0) =0
for any A.
e(A,u,8):[m~,m™ +6(A, k)] [0,1]
is any one of the increasing functions, and satisfies the conditions that £(A,u,8)(m™) = §+(A, 1,8)(m™) and
&(A,u,8)(m™ +6(A,x))=1.
~ Suppose for any radius p, we divide the two intervals [u-p, u] and [u, u+p] to be M(p) equal segments so
that each section has the length _1\71%5’ then we have the following function definitions.
Definition: Define function £~ (A, u, ) as follows:

When x € U (u,0) = ?/,'(u,—;,);((—g)),

£ (A,u.8)00 2o 2 bnd (A0 +8) = bnd( A+ M@ -0 8)

M(p)
Whenxe?.t'( ’M(p))\u ( ‘f%)(%‘),

E A ud)x) 2a; & rrﬁn(bnd(,&(x)+%8), an

In general situations, when x €U~ (u, ;[)Zg)) \ u_(u, (il\—/ll(:));P)’

£ (A,u,8)(x) & £ (bnd(A(x)+£ML-(7Ip(—)p—;—9-5),a;_lJ

wherei=1,2, ..., M(p).
" Definition: Define function gt (A, u,d) as follows:

+ - _oty O%P -
When x €U (1,00 A™ =t (0,528 ) N A,

E* (A, 0,8)(0) & f £ bnd(A(x)+5) = bnd(A(x)+——(M(p) 0)5)

M(p)
When x € (0*(u, D(Wg)\‘lf'(u, s )nA
E*(A,u,8)(x) 2 ot [ d(A( )+(le4"()‘);1) 8), a{;]

In general situations, when X € (u"( Li,[( p)) \ u+(u, (1M1(L>;p )) NA-,

EY(A,u8)x) 2 —max(b d(A(x)+-(-M-SP—);—i)8), a;“_l)

wherei=1,2, ..., M(p).
Denote 8’ =1— A(m™ +6(A, x)), then £t (A, u,8) can be defined as follows:

Definition: Define function {* (A, u,5) as follows:



When X € u+(m— + Q(A, K),O) = ‘u,+(m_ +9(A, K)’-h?[—)((%):

¢ (A, u,8)x) 2 p% 2 bnd(A(x)+5") = bnd (I‘i(x) + (Mlif()p_) > 8’)

When % €0*(m™ +8(A + 10, o)\ (m™ +6(A+1), 125,

CH(A,u,8)(x) 2B & min(bnd(,&(xn%ﬁﬁ} BE]

In general situations, when
_ _ . _ - i1
x et (m™ +0(A + x),%)\u’f(m +0(A+ x),“—M(’—p")-‘l),
X Ao+ A X M()-i) s,
C+(A, u,5)(x) = B:— =mi (bnd(A(x)+——-NﬁT8 ), .i'-—l)
wherei= 1,2, ..., M(p).

All above procedures can be shown in the following Fig.-9.

Theorem: The definition of membership function T """

A(u,s) is well defined. That is to say that we can get one

and only one membership function according to the above +
definitions, and this membership function is normal. INAR 8
@ Cascofue A*.
When the adjusted point u is in A*, we can U e mt
similarly discuss this problem, and have a correspondent )
result. Fig. 9

@ Cascof u€A.
When the adjusted point u is in A, we have u e Al—s =[a;_s, af_s], and we may discuss this problem

according to the distances between u and a;_g, af__s.

In the case oflu - al—_sl < |af_5 - u|, we may define
E(A,ud)x) x<u
~ A le(A0,8)(x) u<x< (u+9(A,K));
A(u 8)()() = .7 ~
’ T (A, u,0)(x) (u+6(A,K)<x=T;
A(x) else.

where T=u+6(A, )+ p(Au+0(A,x)),1-A+6(A,x)))), k=1-E(A,u,5)(u), and other functions
have the same meanings as in the previous definitions.

In the case of |u - al___sl > |a{'_5 - u|, we have a corresponding result.

In the case of Iu-—al—_sl =|af_5 —ul, we had better take observing further, so we do not take any
modification in this moment.

4. The implementation of the logic formula:

The representation of rules is one of the most important subjects in Al and decision-making science. A good
representation can enable us to compute formulae and execute rules easily and feasibly. On the other hand, the
problem of representing rule is acutely the same problem of representing the logic formula which is the antecedent



of the rule. That is to say that in order to represent the rule “if A and B are both true, then the stock is good”, we
acutely only need to represent the logic formula A A B. Based on the truth value flow inferencel?}, in the following
we will introduce a type of networks to represent logic formulae.

We first discuss the representation of formulae only with operators A and —.
Logic formula A, —A, AAB, and AA—B have the following network representations respectively:

A 1 A |
| , 0
A A B B
Fig. 10
If the rule is “A is true with truth value s, then the stock is good”, or the rule is “B is false with truth value t,
then the stock is bad”, or the rule is “A is true with truth value s and B is true with truth value t, then the stock is
very good”, or the rule is “A is true with truth value s and B is false with truth value t, then the stock is average”,

then the logic formulae corresponding to these rules are Afs], —B|[t], A[s]AB[t], and A[s]A—BIt], and the Fig.-10
will be generalized to the Fig.-11.

A s A S

t 4
A—s—-@ A—i—@ B B
Fig. 11

Let s and t range in the interval [-1, 1], then the eight representations in Fig.-10 and Fig.-11 in the above
can be integrated into the Fig.-12 as shown in the following:

When t=0, ¢ replaces A, and Fig.-12 becomes the first two ||z
representations in Fig.-11.

,te[-1, 1].
Besides the boundary function bnd given before, here we also use t sl 1]
sgn(x), int(x), and abs(x) to denote the sign function, the integral function, and B

absolute function respectively. And we use dec(x) to denote the decimal Fig. 12

function which is deﬁned by the formula:

dec(x) 2 X —int(x)

Using T(A) and T(B) to denote the truth values of A and B, and using in(-) and out(-) to denote the input
and output values of each node in networks respectively, then, in reference to Fig.-12, the input and output in ‘node
A’ are both defined as T(A), i.e., in(A)=out(A)=T(A); The input and output in ‘node B’ are both defined as T(B),
i.e., in(B)y=out(B)=T(B); The inputs in ‘node A’ are T(A) and T(B), i.e., in; (A) = T(A), in,(A) = T(B), and the
output value out(A) in ‘node A’ is defined as

out(A) 4 bnd( dec(sgn(s)in, (1)) ) ® bnd(dec(sgn(t) iny (A) ) ------ (Formula-I)
abs(s) abs(t)
where ® could be any one operator in the operator set {min, ¢, X, A, bounded-product, ...}. When t=0, we
define  bnd (dec (Sg; (z:’)I‘(A))) =1, and wuse ¢ to replace A, then, in this case,
abs

dec(sgn(s)T(A))
abs(s)

out(Q) = bnd( ], this is the output value of ‘node 0’ in Fig.-11.

For those logic formulae only with operators v and —, we have a similar result. That is to say that, for .
logic formulac A[s]v B[t], A[s]v —B[t], etc., we have the networks || A s
representation as shown in Fig.-13. ¢ V) s tel-1, 1],
In Fig.-13, the inputs and outputs in nodes A and B have the same
values with those in Fig.-12, the inputs in ‘node v’ are T(A) and T(B), i.e., B

Fig. 13




in;(v) = T(A), iny(v) = T(B), and the output value out(V) in ‘node v’ is defined as

out(v)2 bnd(deC(Sgn(S) in, (V))) ® bnd( dw(sgn(t)mz(V))) ...... (Formula-II)
abs(s) abs(t)
where @ could be any one operator in operator set {max, +, v, bounded-sum, ...}. When t=0, we define
bnd( dec(sgn(t)T(A))) =(), and use ¢ to replace v.
abs(t)

For logic operator —, we use (A A=1A) v (A A B) to replace A — B in logic formulae.

Here we give an example of the neural networks representation of logic formula. The logic formula
- (A AADVA A ADV(A I AAYV(Ag AAIV(AgAAV(A3AAY))0.8]A
(AAAAAIVAIAAGAAIV(A AASAAIV(AgAAIAA)O.STIV
(—1((—|A1V'—|A2V—|A3)A(—|A1V-'1A2V—|A4)A(—|A1V—|A3V—1A4)A
(ﬂA2V—|A3V—|A4)))[07]
has the networks representation as shown in Fig.-14.

Through this logic
neural networks, as long as
we input the truth values of
atomic propositions A,B,C,
..., we can get the truth
value of any logic formula.

The learning rules

of logic neural networks:
Here we suppose
that W(j, i+1:k)

represents the  weight
between the j-th node in
layer i and the k-th node in
layer i+l, and |use
AW (i:j,i+1:k) to denote
its difference; and suppose
that 1(1,j), O(,j) and
E(i, j) to denote the input,
output and error of the j-th
node in layer i respectively;
and use T to denote the
target value; then we may
define E(, j) and
AW(:j,i+1:k) as
follows:

In the output layer, E@, j))=T-0(G,))
in the other layer,

E@,j) =Y, W(i:j,i+1:k)E(i+1,k)
x
AW(i:j,i+1:k) = —aE(i+1,k)
where o is proper positive number parameter.

5. The learning capacity of this neural networks:
This DSNN has two aspects of learning capacities. The first learning capacity is learning weights, and the
second learning capacity is learning fuzzy rules. Through these learnings, we can get proper weights to express the




connections between nodes and proper fuzzy rules. In the previous section, we have discussed the learning problem
of membership functions, i.e. leamning problem of fuzzy rules. In the following we will discuss the leamning rules of
weights.

In order to write clearly, we first give some symbols and their meanings:

O Using f, p, 1, ¢, and d to denote the Factor Layer (f), Predicate Layer (p), Rule Layer (r), Evaluation
Layer (), and Decision Layer (d) respectively; And using L to denote the character set {f, p, r, e, d}, ie.,

Lé{f, P, I, €, d}; And using Z+ to denote the integer set {0, 1, 2, 3, ---+-- 13

@ Using U(c) to denote the number of nodes (units) in layer ¢, where ¢ € L; And using U(c) to denote the
integer set {0, 1, 2, ..., U(c)-1} in the same time.

® Using N(c, 1) to denote the i-th node in layer c, and using I(c, i) and O(c, i) to denote the input and output
values in node N(c, i), where ce L, i € U(c).

O Using W(c,i,c,j) to denote the weight between node N(c,,1) and node N(c,,j), and using
AW(cy:1,¢,: ) to denote the difference of W(cy:1,C,: j), where ¢;,c, €L, and i € U(c;), je U(cy).

® Using T(i) (1 € U(d)) to denote the target values.

® Using E(c, i) to denote the error in node N(c, i), where ce L, i € U(c).

The learning rules of DSNN are given as follows:
Step 1. Set the errors E(d, 1) = (T(i) — O(d, 1)), where i € U(d).
Step 2. Set the errors E(e, i) as the following formula:

Y E(d, j)W(e:i,d: j)

jeU(d)

E(e,i) = , where i€ Uf(e).

U(d)
Step 3. Set the errors E(r, i) and AW(r:i, e:j) as the following formula:

. 1 1{ Ofr,1)E(e, j) ..
E(r,i)=—— bnd_ (—-,—W(rzl,ez ))

.. E(e,J) ..
AW(r:i,e:j)=bnd_} (———,—-W(rzl,e: ))
! " 0e.j) .

Step 4. Using Er, i) (i € U(r)) as the errors in logic neural networks and according to the learning rules of

logic neural networks we describe previously we can get E(p, i) (i € U(p)).

Step 5. The problem of error modifications in layer p is just the learning problem of membership functions
which we have discussed in above.
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