NEURAL MODELS OF FUZZY SET CONNECTIVES

'Kaoru Hirota *Witold Pedrycz
'Dept. of Instrument and Control Eng.
Hosei University, Koganei-city, Tokyo 184 Japan

Dept.of Electrical and Computer Eng.
Univ.of Manitoba, Winnipeg, Canada R3T 2N2
pedrycz@eeserv.ee.umanitoba.ca

Abstract The paper introduces a neural network based model of logical connectives. The network consists of two
types of generic OR and AND neurons structured into a three layer topology. The specificity of the logical
connectives is captured by the network within its supervised learning. Further analysis of the connections of the
network obtained in this way provides a better insight into the nature of the connectives for fuzzy sets; in particular
the analysis can well focus on their non-monotonic and compensative properties. Numerical studies carried out for
the Zimmermann-Zysno data set illustrate the performance of the network.
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1. Introduction

The question of modelling generic logical operations (connectives) on fuzzy sets has attracted
attention from the very early stage of development of the area. Both the advancements of the
theoretical foundations and experimental verification of diverse models have been pursued. One
may refer to an axiomatic approach put forward in [1], a variety of models examining the use of
triangular norms [2] as being two representative streams of the theoretical investigations. The
experimental results are scarce. Nevertheless, the experiments reported in [10] clearly highlighted a
higher semantic complexity of the fuzzy set operations that it had been anticipated. In particular, it
has been revealed that the "pure” AND or OR character of the operations as conveyed by most of
the existing set-theoretic models available nowadays cannot cope well with the available experimental
data. Admitting that, in [10] the authors alleviated the problem by introducing a new compensatory
logic operator whose characteristics constitute a mixture of AND and OR features while the
contribution of those two can be conveniently modelled by an auxiliary parameter of the model.
The model of this connective takes on the form

y=[AND(Xp xj)]l-Y [OR(Xi, xj)]Y

where x; and x; stand for the grades of membership being aggregated, y denotes the result of this
aggregation, while vy is a weight factor used to express a grade of compensation, e [0,1]. The
value of y equal to 0 yields no compensation while 7y set to 1/2 produces the highest compensation
between the AND and OR types of the aggregation. The AND and OR operations could be realized
as the standard maximum and minimum functions.

Another version of the connective exhibiting a similar compensatory nature can be completed as the
following convex combination,

y= YAND(x,,X) +{(1=Y)OR(x,%)
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If we accept the minimum and bounded sum as the corresponding AND and OR operations, the
above expression is read as

y=ymin(x;,x;) +(1-y)min(1,x;+x))
The logic operator of this form has been investigated in [6].
The above two-argument operators can be directly expanded into their many-variable versions.
The weighted mean has been studied as another example of the compensative logic operator {31
For n-arguments it reads as ) "

y=(3, cixf)

peR, p=0. Here the modifiable (ligégree of compensation is accomplished by changing the power
"p". Depending on its value the model embraces several situations: for p=-c it yields the minimum
operation while for p=+ it behaves as the maximum operator. One can also choose a monotonic
mapping between the corresponding values of p and ¥ in the previous model.

The data reported in [10] constitute now a benchmark that is used to experiment with new
models of the logical operations. For instance, the compensatory operations have been recently
studied in the context of neural networks applied towards their realization, cf. [5].

In [9] a new model of nonmonotonic logic operations has been introduced. This study calls for a
substantial revision of the existing models in order to make them capable of handling the principles
of nonmonotonic reasoning.

In this paper we will propose a new model of logical connectives that in its realization uses
exclusively standard set-theoretic operations (triangular norms) whereas a compensative character
can be achieved by developing some structural relationships between them. From a computational
point of view, the model can be also treated as a certain class of logic-based neuron that is
constructed with the aid of AND and OR logic neurons. In general, the proposed model is
nonmonotonic. The issue of "local " domain-dependent behaviour of the logical connectives, as
emphasized in [1], will be addressed through the parametric learning of the connections of the
network. Furthermore, this learning makes it possible to quantify numerically the effect of non-
monotonicity of the operator.

First we will study the model itself along with its features and learning. This discussion is
followed by the detailed numerical studies.

2. OR/AND neuron as a model of logical connectives

Before proceeding with the detailed architecture and learning realized for the overall network,
we will briefly remind the two basic types of logic-based neurons as proposed in [7] [8].
The AND neuron aggregates input signals (membership values) x = [x, x,...x,] by first combining
them individually with the connections (weights) w=[w, w,...w,] and afterwards globally ANDing
these partial results,

y=AND(x;w),
1.e.,
n
y= 'T1 [xi t wi]

where t- and s-norms are used to represenlt=AND and OR operation, respectively.

The structure of the OR neuron is dual to that reported for the AND neuron, namely,
y=OR(x;w),

that reads coordinatewise as



y= S [x; t wil
The AND and OR neurons realize pure" loglc operations on the membership grades. The role of
the connections is to distinguish between different level of impact the individual inputs might have
on the result of aggregation. Considering the boundary conditions of the triangular norms we
conclude that higher values of the connections in the OR neuron emphasize the stronger influence
that the corresponding inputs have on the output. The opposite effect takes place in the case of the
AND neuron: the values of w; close to 1 make an influence of x; almost negligible.

Analysing a list of general postulates formulated for the models of fuzzy set connectives
such as continuity, monotonicity, associativity, and commutativity, we can learn that the two first
from this list are automatically preserved as a straightforward consequence of the utilization of the
triangular norms. The commutativity (and subsequently associativity) requirement is, in general,
not satisfied since the connections of the neurons establish a certain priority between the inputs.
The forfeiture of commutativity is characteristic for logical operations used in nonmonotonic
reasoning, cf. [4]. The models of non-monotonic connectives as proposed in [9] show clearly this
lack of commutativity. For instance, the nonmonotonic AND operator provided there is defined by
augmenting the usual monotonic operator x,ANDx; by an additional nonsymmetrical component
A(x;,x,) expressing a priority occurring between the arguments. This essentially re-translates into
the following form of the expression for the connective,

y=max( A(x;X;).x; AND x;)
To maintain monotonicity one has to keep all the connections equal, w=w,, i=1,2,...,n

The connections modify also the boundary conditions of the logic operations so that they
may not coincide with their Boolean counterparts. The admissible range of output values y for the
AND neuron is computed by taking all x, equal to 0 or 1. In virtue of the monotonicity property of
the triangular norms, we obtain,

yel T wi, 1]
Analogously, for the OR neuron one denves the condition,

y €0, S wi]
Thus the connections different from 0 and 1 limit the lower and upper bound of the values
produced by the logical connective. For the AND neuron one can interpret the lower limit as an
initial confidence one puts in a simultaneous satisfaction of x;,s. Note also that this overall nonzero
initial confidence requires that it holds for all the arguments (all w=0).
In the case of the OR neuron, the upper bound emerges as a direct consequence of our belief that
the complete satisfaction of all x,,s could lead to the highest level of this aggregation y less than 1
(conservative approach). By accepting that position we are tempted to consider a limited credibility
that is reflected numerically by the values of the connections lower than 1. It is sufficient, though,
that at least one of these connections (levels of belief) is equal to 1 and the result of the aggregation
expand into the entire unit interval.
It has been shown in [9] that the monotonicity property might not be preserved in nonmonotonic
reasoning. The discussed neurons can well handle this aspect of nonmonotonicity by adding
complements of x,,s, 1-x;, as auxiliary inputs of the neurons.

The proposed OR/AND neuron constitutes in fact a three-layer network and is constructed
by arranging the discussed neurons into a structure displayed in Fig.1.

The relevant formulas are given as
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Fig.1. Architecture of OR/AND neuron

y=OR([z, z,]; v)
z,=AND(x;w,) and z,=OR(x;w,)

(1)
with v=[v, v,] ,w=[w, w;,...w,.], i=1,2.
We can encapsulate the above expressions into a single formula writing down
y=OR/AND (x; connections)
with connections summarizing symbolically all the connections of the network.

The pure characteristics produced at the level of the hidden layer are then combined by the
OR neuron constituting the output layer. Note also that by changing the connections between the
hidden and the output layer one can easily have an access to the entire range of intermediate
characteristics varying from the AND to the OR-like behaviour. The connections v provide a
necessary flexibility in achieving various levels of compensation between the AND and OR character
of the neuron. In particular, the condition v,=1, v,=0 gives rise to a pure AND character of the
network (no contribution from the OR neuron). The opposite holds for v,=0 and v,=1.

The issue of learning in the above OR/AND neuron will be addressed as a problem of
supervised learning. The updates of the connections w =[w;] and v=[v, v,] are controlled by the
gradient of the considered performance index. Below we will derive detailed formulas considering
the Mean Squared Error (MSE) performance criterion and admitting an on-line type of learning
(that means that the relevant updates of the connections are performed after a presentation of each
pair of the elements of the training data set). Let (x,t) denote a given pair of data from this set. We
derive, 3

Awij=-a/2m
and



AV;=-G/2%;-

1

i=1,2 , j=1,2,...,n where Q=(t-y)’.

Subsequently,
N )Py
33 i « y;a_z_i. ovi

Further detailed computations of the above derivatives can be worked out upon specification of the
triangular norms being used to develop the neurons. The enhancements of the learning procedure
as explained in [7] can be found applicable here.

3. Numerical experiments

In our experiments we will utilize a benchmark data set coming from [10]. This data set
consists of triples (x,,x,,t) where x; and x, are membership values of the two arguments to be
logically connected while t denotes the result of this aggregation. For simulation purposes the
discussed model (1), n=2, will be further specialized by studying the product and probabilistic sum
as examples of t- and s-norms, respectively. Obviously, one can select any other combination of
the triangular norms; moreover they need not to be dual. The learning formulas can be written
explicitly as,

oQ

5.;Tjg.(t-y)vl(1-22V2)A(1"‘1')

%:-(t-y)vz(l-llvl)(l‘B)xj

Ao eyrati-zam

%—(t-y):cz(l-zlvl)
where
=T wu+xrwyx)

1§
and

B=S (waixy)
I#j

The initial values of the connections have been selected randomly ( taken as random
numbers drawn according to a uniform probability distribution function defined over [0,1]). The
learning rate o was set to 0.1. The successive values of the cumulative performance index (taken
as a sum of Q's for the individual input-output pairs) are visualized in Fig.2. The obtained results
plotted versus the target values are given in Fig.3.Overall, they fit well the experimental results.
The connections of the neurons are equal to
-hidden -to - output layer

v=[0.9957 0.999]

5



-input -to - hidden layer

AND neuron
w, =[0.387 0.004 ]
OR neuron
w, =[0.281 0.026 ]
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Fig.2. Performance index as a function of successive steps of learning Fig.3. Membership values in the training
set,- Wdata, (Ormodel

The analysis of the connections reveals that both the neurons in the hidden layer contribute to the
same extent to the output. The main difference lies in a substantially asymmetric treatment of the
input arguments by the OR and AND neuron. In fact, for the AND neuron the priority assigned to
X, is higher than that considered for x,. The order of the priorities for the OR neuron is reversed.
In the next model the commutativity of the logical connective has been retained by keeping
the same values of all the connections for the OR and AND neurons of the hidden layer. The
constraints imposed in this way produced a slightly higher value of the cumulative performance
index ( that stabilized at 0.0585 after 3000 learning epochs).The computed connections indicate
now a visible distinction between the contributions of the neurons in the hidden layer to the output,

-hidden -to - output layer

v=[0.999 0.49]
-input -to - hidden layer
AND neuron
w,=[0.02 0.02]
OR neuron

w, =[0.616 0.616]

The results produced by some other models existing in the literature are compiled in the
table below

reference [10] [6] [3] 5] proposed model

Q (cumulative) 0.080 0.219 0.080and 0.066 0.044  0.0428 and 0.0585

Considering the accuracy of the measurements of the membership functions, we can conclude that
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most of the models perform equally well and the produced differences are quite negligible.
4. Conclusions

We have proposed a neutral network (OR/AND neuron) as a new distributed model of
logical connectives. Essentially, this network produces nonmonotonic and compensative logic
operators. The level of nonmonotonicity could be also controlled at the learning phase. The
parametric flexibility of the network will be particularly useful in a detailed quantification of the
two features stated above in a given applicational domain and being manifested by the relevant
training set. It can be found useful in handling a broad class of problems including those emerging
in the area of decision-making.
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