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ABSTRACT

We discuss some basic ideas from the Dempster-Shafer theory of evidence. We describe
the concept of fuzzy systems modeling used in fuzzy logic control. We use the Dempster-Shafer
framework to provide a machinery for including randomness in the fuzzy systems modeling

process. We show how to represent additive noise in this combined framework.

1. Introduction

Fuzzy systems model (FSM) is a technique that can be used to simplify the representation of
complex nonlinear relationships. It is the basic technique used in the development of the successful
fuzzy logic controllers [1-3]. Using FSM ons partitions the input space into regions in which one
can more simply represent the output. In FSM the partitions are determined by fuzzy subsets. The
use of a fuzzy partition allows for a more sophisticated consideration of the boundaries between the
regions by allowing for a weighted combination of the outputs of neigliboring regions. This
effectively allows us to more gradually go from one output region to the next.

In this current work we extend the applicability of FSM by suggesting a methodoldgy for
including probabilistic uncertainty in the fuzzy systems model. We particulaﬂyconccntrate on the
inclusion of probabilistic uncertainty in the model output. The wchmque we suggest for the
inclusion of this uncertainty is based upon the Dempster-Shafer theory of mdencc [4-8] which is
closely related to the theory of random sets[9). The Dempster-Shafer approach fits nicely into the
FSM technique since both techniques use sets as their primary data structure.

We first introduce some of the basic ideas from the Dempster-Shafer theory which are
required for our procedure. We next discuss the fundamentals of FSM based on the Mamdani [1]
reasoning paradigm. We note that in [10] Yager described the introduction of Dempster-Shafer
theory into the theory of approximate reasoning which is based on a different paradlgm for fuzzy )

reasoning. Wc next show how probabilistic uncermmy in the output of a system can be mcluded in
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the Mamdani type fuzzy systems model using the Dempster-Shafer paradigm. We described how
various types of uncertainty can be modeled using this combined FSM/D-$ paradigm. We are
particularly concerned with additive noise and rule uncertainty. We next discuss a modification of
the basic Mamdani formalism for FSM which leads to an analytic structure for the system output
[11]. One advantage of an analytic output structure is that it simplifies the process of learning the
system parameters. Finally, we look at the introduction of the Dempster-Shafer representation of

probabilistic uncertainty into this analytic formalism.
2. Dempster-Shafer Theory of Evidence

In this section we inuqdu;:é some idea§ of the i)empster—Shafcr uncertainty theory {4-8].
Assume X is a set of elements. A Dempster-Shafer belief structure m, or information granule, isa
collection of non-null subsets of X, Aj,i=1,...n, called focal elements and a sét of associated
weights m(A) such that

(1) m(Ap e [0, 1]
@ XimAp=1.

It should be emphasized that no restriction exists on the couecﬁop Aj except that they don't
include the null set. : | L ;

One semantics that can be associated with this structure has been discussed by Yager 10,
12). Assume we perform a random experiment' which can have one of n’ outcomes. We shall
denote the space of the experiment as Y. Let L Pj be thc probability of the ith outcome yi- Let Vbe
another variable taking its value in the setX. Ttis thevaluc of the variable V that is of interest to us.
The value of the variable V is associated with the pcrformance of the experiment in the space Y in
the following manner. If the outcome of the experiment on the Space Y is the ith element, Yi.» we

shall say that the value of V lies in the subset Aj of X. Using this semanues we shall denote the
value of the variable as ‘

Vlsm,

where m is a Dempster-Shafer gmnule, m, with focal clements Aj and weights m(A;) = P;.
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A situation which manifests the above characteristic is the following. Assume we have a_

"wheel of fortune” divided into three colors: red, yellow and green. The spinning of the pointer

Yellow

Red

Figure #1.

results in the landing in one of the colors. The probability depends on the portion of the cimie that
is that color. Assume we have a vehicle whose driver is allowed to go a certain speed depending on
the color in which the arrow lands. If the arrow lands in red the driver can go any speed between
10 and 30 mph, if the arrow lands in yellow the driver can go at any speed between 30 and 50 and if
the arrow lands in the green the driver can go to any speed he desires (0 to 150). In this case the
variable V is the speed of the car. The focal elements are A = [10-30], Az = [30-50],
A3 = [0~150]. |

When our information is of the form of a Dempster-Shafer belief when attempting to try to
find the probabilities associated with arbitrary subsets of X, because of the imprecision in the
information, probabilities on focal elements, we can't find exact probablhues but ranges. Two
mmmvdmdmcapmﬂwrelevantmfomanon '

LetB be a subset of X meplausibihty of B, denoted Pi(B), is deﬁned as’

PIB)= Z m(A)

| ANBe0
The belief of B, denoted Bel(B), isdcﬁnedas
Bel®)= Y, m(A)
i
BcA;
It can be shown [13] that for any subset B of X

Bel(B) < Prob(B) < PI(B).
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Thus the plausibility and belief provide upper and lower bounds on the probability of a subset.

An important issue in the theory of Dempster-Shafer is the procedure for aggregating
muldple belief structures. on the same variable. This can be seen as a problem of informatibn
fusion. In [S] Shafer describes a procedure for combining multiple belief structures. This

procedure is based upon the Dempster rule for aggregation and be seen as a kind of conjunction

(intersection) of the belief structures.

Assume mj and m) are two independent belief su'uctures; on the space X, then their
conjuhction is another belief structure m, denoted m =m] @ mj). The belief structure m is obtained

in the following manner. Let mj have focal elements Aj,i=1,...n] and let my have focal

elements Bj, j=1, . . . n2. The focal elements of m are-all the subsets Fg of X where

(1) FK=AjNB; forsomeiand j
(2) Fx= .
The weights associated with each Fg is

m(FK) = 71mi(A) + my(B))

where
T= i?J. my(Ay) * m2(B;)

AiNB=0

Example: Assume our universe of discourse is X = {1, 2, 3, 4, 5,6}
m) m

A1 =(1,2, 3} -m(Ap)=.5 By1={(25,6)
As = (2,3,6) m(A) =.3 By = (1, 4}
A3=(1,2,3,4,5,6) m(A3)=.2
Taking the conjunction we get

F1=A1 NnB1=(2)
Fa=A1nBy=(1}
F3=A2 N B1 = (2, 6}
Fg=A3NB]={2,5,6}
F5-‘-A3nBl={l,4}.

m(By)=.6
m(By) = 4
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We also note that Ay "By = ®.
Since only one intersection gives us the null set then
T =m;j(Ag) » m(By) =.12
therefore
1-T=.88.
Using this we calculate
m(Fy) = ( )( 5)(.6) = .341
m(Fp) = )( S).4) = .227
m(F3) = ( )( 3)(.6) = .205
m(F4) = ( )( 2)(.6) = .136
m(Fs) = ( )( 2)(4) = '

The above combination of belief structures can be seen to be essentially an intersection,
conjunction, of the two belief structures. In [14] Yagcxf provided for an cxt’eqsion of the
aggregation of belief structures to any set based operation. Assume V is any binary operation
defined on sets, D= A V B where A, B and D are sets. We shall say that V is an "non-null
producing” operator if A #® and B2 ® = A VB = ®. We note that union is non-null producing
buti mtzrsecuon is not. Assume m] and m; are two belief structures with focal elements Aj and B;
respectively. Let V be any non-null producing operator. We now define the new belief structure m
denoted

m=mj Vmy. - |
The belief structure m has focal elements Ex where Eg = A; V Bj and m(E) = my(A;) » m(B;).
If V is not non-null producing we may be forced to do a process called normalization [15]. The
process of normalization consists of the following
(1) Calculate _
T X myapem®p

. AVBRO
(2) Forall Eg = A; V Bj » ® calculate

Q) = b my A By
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(3) For all Eg = ® set m(Eg) =0.
Example: We shall now continiie our example by considering the union of the two belief

structures used in the previous example. We first note that union is a non-nuil producing operation.

If we let
m=mjum)
then
m(E;)

E1=A1UVUB1={1,23,5,6) 3
Ex=A]UBy=(1,2,3,4) 2
E3=A2UB1=(23,5,6} .18
E4=A2UBy=(2,3,4,6) 12
Es=A3UB1={1,23,4,5,6} 12
Eg=A3UBy=(1,2,3,4,56] .08

We can use the Dempster-Shafer structure to represent some very naturally occurring kinds
of information. Assume V is a variable taking its value in the set X Let A be a subset of X.
Assume our knowledge about V is that the probability that V lies in A is "at least o." This
information can be represented as the belief structure m which has two focal elements A and X and
where

' m(A) o and m(X) 1.

ThemfmmanmmatmeprobabxhtyofAmcmﬂyamnbempmsemedasabehefsuucm
mwidufocalelemcmsAandAwhercm(A):aandm(A) =1-a

An andinary probability distribution P can also be represented as a belief structure. Assume
for each element x; € X it is the case P; is its probability. We can represent this as a belief structure
where the focal clements are the individual element A; = {xi} and m(Ai) =P;.

Belief structures of the above kmd, where the focal elements are singleton subsets, are called
Bayesian [5] For these types of structures it is the case that for any subset A of X, PI(A) = Bel(A),
thus the probability is uniquely defined as a pomt rather than interval.
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It is very natural to extend the idea of Dempster-Shafer belief structure to allow for fuzzy
sets (16, 17]. We call these fuzzy Dempster-Shafer structures. We first allow the focal elements to
be fuzzy subsets. In order to capture the ideas of plausibility and belief we need two ideas from the
theory of possibility [18]. Assume A and B are two fuzzy subsets of X, the possibility of B given
A, denoted Poss[B/A] is defined as [19]

Poss[B/A] = Max;[A(x;) A B(x;) (A min)

The second concept is that of certainty of B given A, we denote this Cert[B/A] and define it

Cert{B/A] = 1 - Poss[B/A].

As shown in [16, 20] using these ideas we can extend the concepts of plausibility and belief
as follows: Assume m is a belief structure on X with focal element A;. Let B be any fuzzy subset
of X. We define | |

PI(B) = ; Poss[B/Ajm(A;)
and
Belief =  ; Cen{B/A{lm(A;)

We can see that the plausibility and belief are the expected possibility and certainty of the
focal elements. | -
| The introduction of fuizy focal cléménié doesn't 'greatly complicate the process of
combination of belief structures. If V is some setoperation we simply use theﬁxzzyversion of it.
Formmplelfml andmzarebehefstrucnnuandm =m] umzthenthcfocalelcmentonmare

EK AjUB;
where ) .
ER® =A®)vBjx)  (V=max) h

In combining two belief structures my and myp using some set operation V we calculate the
new focal elements as EX = Aj V Bj and its weight as my(Ap) » mp(B;). Impliciin this formulation
- is an assumption of mdependcncc between the belief structures. Essenually this mdcpendcnce is

structure are independent. This mdepen&nce mamfm nselfm thc use of thc pmduct to calculatc
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the new weights. That is the joint occurrence of the pair of focal elements A; and B is the product
of probabilities of each of them individually, m(A;) and m(B;).

In some cases we may have a different relationship between the belief structures. -One very‘
interesting case is the case we shall call synonymity. For two belief structurés to be in.synonymity
they must essentially have their focal elements induced from the same experiment. Thus if m] and
my are two belief structures on X that are in synonymity they should have the same number of focal
clements v;'ith the same weight. Thus the focal elements of mj are Aj,i=1,... n, and those of m)
are Bj=i=1,...n then mi(Aj) = my(B;). | If V is any non-null producing set operator then if
m=m;j V m) the focal elements of m are

Ei=AjVB;
where m(E;) = m(A;) = m(B;).

If V is not non-null producing we must use a normalization process if necessary.
3. Fuzzy Systems Modeling

Fuzzy systems modeling has shown itself to be an important tool for the development of
intelligent systems, especially in the area of control. .
Assume we have a complex, nonlinear multipleinpin single output relationship. (See Figure

—

input j System -% 'outp‘ut\

#2.)

Figure #2: Basic System |
The teclmiqué of fuzzy systems modelmg allows us to represent the model of this system bsl
partitioning the input spacc Thus if Uy, ... Uy are the input variables and V is the output variable
we can represehtthe non-linear function by a collection nof"rulés" of the form
When U7 is Ajj and Uy is Ay, . . . and Uy is Ay then V is Dj
where if X; is the universe of discourse of Uj then Aij is a fuzzy subset 6f X; and with Y thc



63
universe of discourse of V then D; is a fuzzy subset of Y.

In the preceding rule form the antecedent specifies a condition that if met allows us to infer
that the possible value for the variable V lies in the consequent subset Dl For each rule the
antecedent defines a fuzzy region of the input space, X1 x X3 X ... X Xi, such that if the input lies
in this region the consequent holds. Taken as a collection the antecedents of all the rules form a
" fuzzy partition of the input space. A key advantage of tﬁis approach is that by partitioning the input
space we can allow simple functions to represent the consequent.

The process of finding the output of a fuzzy systems model for a given values of the input is
called the "reasoning” process. The chdice of the term reasoning as opposed to solving is a result of
logical structure in the which the fuzzy model is rooted. The most commonly used method for
reasoning with fuzzy systems models is the Mamdani-Zadeh paradigm. [21, 22]

Assume the input to a fuzzy system model consists of the value Uj = xjforj=1,. ..r. The
procedure for reasoning used in the Mamdani-Zadeh method consists of the following steps:

1. Calculate the firing level of eachrule ;
T4 = Minj[Ajj(x;)]
2. Calculate the output of each rule as a fuzzy subset Fj of Y where
| Fi(y) = Minf; , Di(y)} |
3. Aggregate the individual rule outputs to get a fuzzy subset F and Y where
F(y) = Max{[Fi(y)]

Theob;ectFmafnzzysubsetonm&canngthcfuzzyoutputofthcsystem. Theﬁnalstep
ot'thepmcessxstogeta&ngletonvalueforVrepresentanveofthesctF 'Ihlsfourthsteplsusually
called the defuzzification process, Yager and Filev [23, 24] have investigated this issuc in
considerable detail. The most commonly used procedure for defuzzification process is the center of
gravity [COA method]. Using this method we calculate the defuzzification value as

ZiyiF(y)
ZiF(y) .
In [23] Yager and Filev describe this techmquc as essenually one in which we convert the.

output fuzzy subset to a probability distribution, byamplenormahzanon,anddwntakcthcexpecwd-

y=
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value over the space Y.

We can express the defuzzification operation in a simple vector notation. All vectors to
follow have dimension ¢ where ¢ = Card(Y). Let [F] be a vector whose jth cbmponent is F(y;) and

let [Y] be a vector whose jth component is y; and let [I] be a vector with all ones. We can express
V= <[Y], [FI>
<{1], [F}>
where <> indicates the inner product, <A, B> = ATB =BTA.

4. Probabilistic Uncertainty in the Mamdani Model

In the basic fuzzy systems model, the Mamdani-Zadeh model, the consequent of each rule
consists of a fuzzy subset Fj. The use of a fuzzy subset implies a kind of uncertainty associated
‘with the output of a rule. The kind of uncertainty is called possibilistic uncertainty and is a
reflection of a lack of precision in describing the output. The use of this imprecision allows us to
represent the complex nonlinear system in terms of a collection of éimpler fuzzy rules. In this
situation we shall considcr the addition of a probabilistic component with the consequent value.

As we have indicated the consequent of the individual rules of a fuzzy system model (FSM)
isapropositionbftheform”, |

Vis Dj. o
The intent of this proposition if to indicatcthatthc_value of the output is constrained by (lies in) the
“subset Dj. The use of a set provides a robustness :w'thié modeling techniquc.

We shall now add further modeling capacxty to thé fuzzy systcm modeling technique by
_allowmgalsoforprobabnhsncuncenmmymmeconsequent.

A natural extension of the fuzzy systems model is to cormdcr the consequent to be fuzzy
Dempster-Shafer granules. Thus we shall now consider the output of each rule to be of the form

Vism;

where mj is a belief structure with focal elements DIJ which are fuzzy subsets of the universe Y and

associated weights m;(Dj;). Thus a typical rule is now of the form

i
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When Uy is Aj1 and U is A, . .. Uris A, then V is m;.
We note the antecedent portion of the rule is unchanged-

The inclusion of a belief structure to model the output of a rule is essentially saying that
m;(Dj;) is the probability that the output of the ith rule lies in the set Djj. So rather than being certain
as to what is the output set of a rule we have some randomness in the rule. Parenthetically we note
that mj(Dy;) = 1 for some Dj; then we have the usual case introduced by Mamdani.

It should be carefully pointed out the use of a Dempster-Shafer granule to model the
consequent of a rule brings with it two kinds of uncertainty. The first type of uncertainty is the
randomness associated with determining which of the focal elements of mj is in effect if the rule
fires. This selection is essentially determined by a random experiment which uses the weights as
the appropriate probabilify. The second type of uncertainty is related to the selection of the outcome
element given the fuzzy subset, this is related to the issue of lack of specificity. This uncertainty is
essentially resolved by the defuzzification procedure used to pick the crisp singleton output of the
system.

Let us now formally investigate the workings of the Mamdani-Zadeh reasoning in this
situation with belief structure consequents. Assume the input to the system are the values for the
antecedent variables, Uj = xj. The process for obtaining the firing levels of the individual based
updn these inputs is exactly the same as in the previous situation. We recall for each rule the firing
level, 1;, is determined as follows |

T = Min[A;;(x;)].
The output of each rule is a new belief structure #; defined on Y denoted
By=tamj | |
where ff; is a belief structure on Y. The focal elements of i; are Fjj where Fjjis a fuzzy subset of
Y defined by
Fij(y) =1 ADj),
where Dj; is a focal element of the rule consequent. The weights associated ‘withthese new focal

elements are obtained as
5(Fjj) = my(D;;).
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The overall output of the system m is obtained in a manner analogous to that used in the
Mamdani method. We obtain the overall system output m by taking a union of the individual rule

outputs,
n
m=U m;.
=l
In the earlier section we discussed the process of taking the union of belief structures. Thus
for a collection & = {Fjj(1), . . . Fjj(n)} where Fij(j) is some focal element of i; we obtain a focal
element of m,
E=U Fy4)
i
and

m(E) = H m;(Fij5))

Thus as a result of thls third stcp we obtain a fuzzy Dempster-Shafer structure V is m as our
output of the fuzzy system model. We shall assume the focal elements of m are the fuzzy subsets
Ej, G=1,...q) with weights m(E;).

The next step in the procedure is to apply the defuzzification process to m to obtain the
smgleton outputy. The procedure used to obtain this defuzzified value is an extension of the
originally described defuznﬁcanon procedure. For each focal elcmcnts EJ we calculate its
defuzzified value yj as follows '

_TyEiy) _ <Y, [Ejl>
LE(y) <0 P
Wethenm:casthcdefuznﬁmonvalucofm,y,
¥y = Z; 7j mEy.
Thus yxs&ssenuaﬂyﬂzcexpecteddeﬁmﬁedvalueofﬂxefocaldemems of m.

The following simple example illustrates the technique just described.

Example: Consider a fuzzy systems model with two rules
IfU.is Aj then Vismy
fUis A then Vismy.

For samphcxty we shall assume that both - ml and mj are behef structures with two focal elements
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defined as follows:
mjy .
D11 ="about two" = {4—16-, %, -56-} mi(D1) =7
Dj2 = "about five" = {25-, %—, '36-} mi(Dy2)=.3
m2 :
Do = "about 10" = {l 10, & my(D21) = .6
Dpo = aboutlS"'-{M 15 JI% mp(Dyy) =4

We shall consider the input of the system to be x* and assume that the membership grade of
x*in A and A are .8 and .5 respectively. Thus we have the firing levels of each rule
Ty =A1(x*)=.8
2 = Aj(x*) = .5.
Using this we can calculate the output of a belief structures of each rule

fﬁl =T1Am1

iy =T Amy.
. Thus we get
Fi1=%1 ADy; = {"1& &4 mF1)=.7
Fiz= =71 ADpp={3 .'g,ﬁ} m(Fi2) =3
Fa1=14Dy =[5, 43 .5} - m(Fz1)=.6
Fo=uaDp=(4, .3 4) - m(Fp)=4

We next obtain the union of these two belief structure,
m=mjum).
The focal elements of m are obtained as follows: ;
E1=Fj URy | m(E;) =*x':‘:1(F1 1 * fa(F21)
Ex=F1] UFp  mE) =&y (Fyp) « Rp(F0)
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E3=Ej]2UFy m(E3) = iy (F12) « Tip(Fa1)

E4=EjpUFy m(Ey) = iy (F12) # Mp(F20)
Doing the above calculations we get '

Ej= {aﬁ 4.8, 3‘1%% m(E;) = .42

R v

B3 A ) oo

Eq= (4 ARk 15’ 10} m(Eq) =.12
We now proceed with the defuzzification of the focal elements,

(O + () + (6)3) + (5O + 10+ 11) _
Defuzzy(Ey) =1 = 6+8+6+575+35 =35

Defuzzy(E) =72 = &Ll = 6.4

Defuzzy(E3) = J3 = 23-‘-35 =723

Defuzzy(Eq) =74 = 2345-21 =834,
Finally combining these defuzzified values we get

Y=(42) % 54 + (2.8) » 6.4 + (.18) % 7.23 + (.12) « 8.34
y =6.326

S. Some Classes of Uncertainty

The development of these fuzzy systems model with the addition of the Dempster-Shafer
modules allows us to provide for the representation of different kinds of uncertainty associated with
fuzzy modelmg We shall in the following discuss some of the possible uses of the new structure
just introduced.

One important situation in which we can use the preceding model is in the case where we
have a value o € [0, 1] indicating the confidence or belief or strength of the ith rule [25]. In this
casc we have a nominal rule of the form

IfUis Aj then Vis B; ‘
with belief/confidence "at least o;". Without loss of generality we have assumed singlé antecedents.

Using the framework developed above we can transform this rule, along with its associated k/
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confidence level into a Dempster-Shafer structure
KUis Aj then Vis m;.

In this new structure m; is a belief structure with two focal elements, Ajand Y. Werecall Y
is the whole output space. The associated weights are mj(Ap =o; and m(Y) =1 -o;.

We see that if a; = 1 then wcgctthéoriginalrule while if o = 0 we get a rule ofthq form

KFUisAjthenVis Y.

Another important application is the modeling of additive noise to the systems output.
Assume we have a system which has additive noise, that is the system output is V + Nj, where Nj is
some noise.

We consider first using fuzzy systems modeling to provide output without considering the
noise component. Thus we use the typical rules of the form

| When U is Aj then V is B;.
Again we call B; the nominal output value.
' We now assume that the output is contaminated by output noise Nj, thus we get
When U is Aj then V is B + N;.

The noise component is a random component. The information about the noise resides in a
possibility density function, f(x), (see Figure #3).We shall now investigate how we can effectively
include this noise in our model in the same spirit as our fuzzy model.

y . ()

. ¥
Figure #3: Possibility Density Function
We recall that the area under the curve is equal to one. Furthermore, since
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X2
P(x] SNSx2)=I (x) dx

X
then the area under the curve between x; and x is the probability that N lies between x1 and x3.

(See Figure #4.)

(x)

A\

Xl xZ ‘x

Figure #4.

One can suggest an approximation to this probability density function by a fuzzy probability
distribution P. A fuzzy probability distribution P consists of a collection of fuzzy sets of real line,
Q1 - . . Qq and associated probability distributions Py, . . . Py, where

| 1) 2Pi=1
2) Pije [0, 1].
Thus P; is the probability fuzzy subset Q; will occur. Figure #5 shows the relationship between the
additive noise probability density and the fuzzy probability distribution.

Figure #5.
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In particular P is the area under the curve indicating the probability that N lies in the fuzzy interval
Q1. Essentially we are formally saying

Pi=P(Ne Q)= I f(x) dx.
Q

However our fuzzy probability distribution is only an approximation to this.
It is essentially a fuzzy partitioning of the probability density function. We now can use this
fuzzy probability distribution to model the random noise N in our fuzzy systems model.
Starting with our basic rule
IfUisAjthen VisBj+ N
we transform this into collection of rules
I Uis Aj then Vis B + Q P
IfUisAithenVisBi+Q2. Pr
U is Aj then Vis B{ + Qm - Pm
However it can be easily seen that this can be represented as a Dempster-Shafer belief structure.
IfUis Aj then Vism;
where the focal elements of m; are
Fi1=Bi+Q m(Fj}) =Py
Fio=Bj+Q - mFjp) =P
Fim=Bj+Qm » m(Fim) =P _
Theoperaumofad&uonofmesesetscanewlybcaccomphshedbyﬁmzyamhmenc [26]
We recall that if G and H are two fuzzy subsets of the real line then if
E=G+H
wehavethatforanyze Reals
E(z) = Max [G(x) A H(x)].

z—x+y
Thus the inclusion of additive noise in our model accomplished by usmg belief structures as

the consequents of the rules. These behef structures have focal elements obtained by starting with
the nommal,output andﬂxen perturbing by adding the noisc component.
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6. Analytic Fuzzy Modeling

With the wide applications of the fuzzy systems modeling in the fuzzy logic controllerS
considerable interest has been focussed on the development of a more analytic and tractable
representation of the reasoning process than that pro‘;ided by the original Mamdani-Zadeh
paradigm. This interest has been motivated to a large degree by a desire to automate the process of
learning the rules from data which is difficult using max's and min's. A second motivating factor
for this desire for simplification is to speed up the on-line reasoning process.

In [27-30] Yager and Filev have investigated an alternative model for the representation and
reasoning process in the fuzzy system modeling paradigm. In particular they suggest the following
modification to the original Mamdani-Zadeh paradigm:

1. Replace the min operation used in the process of determining the individual rule
output from its firing level and consequent to using the DMHLL

Fi) =1 *Di(y)
I Replace the max operation used in the process of aggregating the rule outputs to

use of an average
Fo) =1 XF».
The introduction of these modifications as shown in [27-30] leads to a very simplified
analytic expression for the defuznﬁed output, Y, of the fuzzy systcm model,

zl Ti sx Yx
" Zit S
In the above ¥ is the overall output, ¥; is the defuzzified, using the COA method, value of the 1‘h

rule consequent D;. Tj is the ﬁnng level of the ith rule. S; is the power of the consequent fuzzy

y=

subset Dj, §; = Zj Dj(yj). For continuous consequents §; is the area under the membership

function
§i =I Di(yMy.
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If it is assumed that all the S; are equal then

— - to _o
7= it yi
)R A
This form of output which is close to the Takagi-Sugeno [31] structure and is in the spirit suggested

by Kosko [32] has been used in many applications of fuzzy logic controllers.
In the following section we shall investigate the structure of the models we obtained using
the modification described in I and II to the case where the consequent is a belief structure. In
particular we shall look at the case where we have additive noise. For simplicity we shall assume
that the additive noise components are point sets. Thus in this case we have a collection of r rules of
the type
K Uis Aj then V is m;
where mj is the belief structure with focal elements Djj with weighis mj(Djj). Furthermore we
assume that
Djj=D;® uj.
In the above Dj is the nominal fuzzy output of the ith rule and uj is a noise component which is
assumed a crisp point thus |
Dij(z) =Dj(z- uj).
We shall denote mj(D;) = p;. )
- Let us use 7 to indicate the firing level of the ith rule. The output of the system is the fuzzy
Dempster-Shafer granule
where m has focal clements Eg. We note that Eq is constructed by selecting one focal element from
cach m;, thus we let D,,q be the focal element from m1 invdfved in the construction of Eq ‘In
particular the form of Eq is | |

Eq®) =} [, Dy @)]
i=1

r
- m(Eg) =] ] Pi,,
| =1
where Piiq =mi(Diiy).
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Furthermore we can calculate the defuzzified value of Eq. In particular
_= _EWIY]
- ZitSi[dit+ugg)
¥q=
Zit Si
In the above §j is the power of the set Dj, Sj = Zj Di(yj), d; is the defuzzified value

associated with D; and uj(q) is the noise component associated with the ith rule in the q focal
element. |
The final output of this system is
y= Z yq m(Eq).
It can be seen that Dy éppe:m in a focal element with every combination of all the elements
from the otherrules. In particular this leaves a very simple form for the overall defuzzified value
S,.___Zi 13 Si (d; + Up
it S

where
Ui = Z; Uj; Py,
the expected value of the noise in the ith rule.
The above formulation for ¥ provides a nice closed analytic fomi for the calculation of the
output pf this fuzzy systems model. |
Wc' now consider Lhccasc; where each rule his.a mcasure o of certamty associated with it.
Assume ourknowledge base consxsts ofa setof n rules ofthe form
- If U is A, then Vism; - ,
‘where m; is a belief structure mﬂztwofocalelcments,DlandY Thewelghtsassocxawdwnhthcsc
are mi(D;) =ajand my(Y) =1 -a. We recall that Y i is the wholc output space. In the previous
section we suggested that this corresponds to a situation in whxch we have o support associated
with the ith rule. That s, a; is the belief we have in rule i.
We shall look at the form of the output of such a fuzzy system model using the sxmphfied
reasoning paradigm. o | - | |
In the most general case because of:he‘si'te_rm the formulauon of such éan.ana;yﬁc_ model is
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difficult. However, if we consider the special situation where the sets Dj and Y are represented by
point values, ¥j and yq respectively we get a nice simplified closed form for the system output
Z; () YD + yo(l - o)

- §=
ZiTi
y=Yo I + Z1ici(¥i - Yo
it

7. Conclusion

We have suggested a methodology which can be used for the inclusion of randomness in the

framework of fuzzy systems modeling. We used the Dempster-Shafer theory of evidence to
accomplish this task.
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