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Abstract: Ve study random fuzzy éets and théir rélationship to fuzzy
set-valued measures in a separéble Banach~space. Using the condltlonal
expectations of random fuzzy sets, we introduce the concept ot tuzzy
martingales. Some proberties and.convengence theorems of tuzzy mart-

ingales are investigated.
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1. Introduction

The concept of fuzzy random variables was introduced by Puri and
Ralescu [6] on the basis of the set representation of fuzzy sets. It
enables us to use the rich mathematical apparatus of the theory of
random sets and set-valued measures. The definitions and properties’
developed by Puri and Ralescu (12) allows us to further develop the
concepts of random fﬁuéy sets in a Banach sbace.- The purpose of this
paper is to study the conditional expectations of random fuzzy sets

and fuzzy mébtingales.
2. Random Sets and Random Fuézy Sets

Throughout this paper, (@ ,X ,P) will be a complete probability
space, where the probability measure P is nonatomic. Let X be'a sepér;
able Banach space #ith norm il .11, and let K(X) and CoK(X) denote the
family of all nonempty compact and nonempty compact convex subsets of
X, respectively. A 11near structure in K(X) is detlned by

A+B-{a+b, a€A, bEB} and AA={4daia &A)
The topology in K(X) is introduced via the Hausdortt distance
des(A, B) = max{ Supacainfuaslla - bll,‘supbegiﬁf-eAlla -b 1l }

The norm of AEK() is defined as Al u = SuPaca ll all . A random set.
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is a £ -measurable set-valued mapping f: 2 — K(X). For a random set
f, let S(f) be the set of integrable selectors ot f. Then the Aumann
integral of f is defined by ( see 2], L3I )

A IfdP = { fedP;: o €S() }

A random set f is called integrable bounded it [ It Il s dP < oo,
Note that because the pf‘ob. measure P is nonatomic, [ It |l udP < o=
implies the existance of [t dP&CoK(X). More details on the measur-—
ability and integrability of random sets can be found in {3, 5, or 8.

Let F*(X) denote the family of all fuzzy sets u:X - [0, 1] with
the properties ‘ N

(@) u is uppercontinuous
(b) Lz (# ) is non-empty compact and convex for each « € [U, 1].

where Lz (# ) is the u —-level set of &« defined via

{ x€X5 u D>a 3} ifa >0
La (u) = { .
cl{ x€X5 » x> 03 ifa =0
A linear structure in F"(X) is defined by the operations »
(r + v )(®) = suPogagy {x 5 xXE€ELa(u ) + La(v ) }
(ﬂ-#)(x)=sqposas1 {x 3 x€4 Lx(u)

for u ,v €EF*(X) and 1 €K. ‘The metric in F"‘(X) is Vt‘:.fefined by
& (., v) = suposag: dulle ), La (v ))
and the norm llx Il of a tuzzy set 1 €F*(X is defined as
Ha I = sup oguea llle Ge)ilm. |
For #-m (>1), & €F* (0, we denote dulla & n), Lax u)) — U and

3 (Wm, ) -0 byun——a-——u andu.,——é-——u,respectlvely.

Definition 2.1. A random fuzzy set is a mapping s : @ — F*(X) sich
that Lz (# ) is a random set for each « & [0, 1].

Definition 2.2. The expected value of random fuzzy set u , denoted by
'Eu » 1s the fuzzy set such that

Eu (x) = supoca<af{x 3 xX€ Q) fLa (nw (@))dP 3 ( x€X)
Definition 2.3. A random fuzzy set u is called integr-ably bounded .
if the random set Lo(x ) is integrably bounded The sequence ot random

fuzzy sets {# n} is called uniformly integrably bounded -if the sequence
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‘of random sets {Lo(u »)} is uniformly integrably bounded.

Note that the existence and uniqueness 9f Ex for an integrably

bounded

random fuzzy set u are established in |6J, and we have
Le (Eu) = (A) JLa (u (0 ))dP ( Aumann’s integral )

Applying the propertieas of Aumann’s integrals [2] (3], we get

Theorem

Then

Proof.

i.e.

2.1. Suppose #', v are intesrably bounded random fuzzy sets.
(1) Ex €FP (0 |

@ 6 (Eu,BEv )< f(u(w), v (@) ) dp

(3 E(u +v ) =Eu + Ev |

(1) See [86, theor‘_em 4.2].
(2) Since Eu , Ev €F*(X), we have
8 (Eu, Ev ) = suPocag: du( La (Eu ), Lz (Ev ) )
= supo<a\1 du( (&) fLz (Ex (@))dP, (&) fLz (By (e ))ar )
< SuPogagr fdul Le (Eu (@)), Le (Ev (o)) )dp
< [ [supogug: dul Lz (Eu (@)), Le (Bv (@)) )]dP
=86 (u (@), v (@) )dP
(3) For ‘every x€X, we have | . |
= Suboswer { @ i X€ W) fle @)+ W) L & (@))a 3
= SUPogag1 {ax: x€lau) +La(v) 3 = (!:.u *+Ev )
Ew +v) =Eu +Ev : __-ur_u.

Theorem 2.2. Let u . (n>1), # be a sequence of uniformiy integrably

’bounded

random fuzzy sets. 'Then

_(1) for each « 6 fo, 11,

un(m) —- u (o) a.e. ====> Eu n(w) — Eu (w) a.e.

(2) “n(@) — u (@) a.e. m) Eu.-.(m) — Eu (@) a.e.

Proof.

(1) For each « € (U, 1], Ld(nn) (n)l), La(u) is a sequence

of uniformly integrably bounded convex random sets. 1t tollows from:- L8J

that du
that is

( (A)ch(un(m))d’ (A)qu (m))dP) -0  a.e.,
Eun — Ex a.e. : | | o |
(2) Follows from theorem 2.1.(2) immediately. _ u.n.v.
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Definition 2.2. Let £ o be a sub-o -algebra of £ and # an integrably

bounded random fuzzy set. The coditional expectation of # with respect

to £ o, denoted by E(# /Z 0), is the random fuzzy set with properties:
(@ Eln/Zo) is = 6—measﬁrable

(b) EEW /= o).z,A) = Eu .x a) for every A2 o

Note that the existance and uniqueness (P-a.e) of Eiu /% o) are

established in [7] and |8!. Some of the properties of this conditional

expectation are stated next:

Theorem 2.3. Let » , v be inteér‘ably bounded random tuzzy sets. ‘lhen
(1) La Eu /= o)) = E(La (# )/ 0) for each « € [0, 1]
(2 E({zu +Bv)I/Eo) =aku/To)+HEW /Eo)
(3 EE®/Z0)) =E)
@ if w is T 6—measurab~le, then E(x /Z0) = p a.e.
5) if £1 C X2 are two sub—o —algebras of 2 , then
EEW/Z 1)/22) =E@ /Z,) =EEW /= 2)/% 1)

Proof. (1) See [7, proposition 4.1].
| 2) (3) (4) can be verify easily.

) T. C = implies that Eu /T 1) is £ z-measureable. It
follows from (4) that E(E(u /= 1)/Z 2) = E(u /= 1) a.e. . Por every
A€Z 1 C T a, since EEG /Z 2)x A=EW % ), we have E(En /E 2)/E 1)
= E: /Z 1). This copletes the proof of (5). | Q.E.D.
Theorem 2.4. Let u (n>1), » 'be a sequence of integrably bounded
random fuzzy sets. Then -

(1) for each = € [0, 1],
B —a — pu a.e ====> K@ o/Z0) —=x — EW /T o) a.e.

2 u -8 -—-pu ae===> E@n/Z0) —4 — EWw/Zo) a.e.
Proof. Follows from'theor‘ém» 2.2 evidently.
3. Fuzzy Martingales and Their Convergence

Let { £ ., n€EN } be an increasing sequence of véijbjc -algebras of %,
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and Z o© = 6 (Un31Z n) = £ . The sequenée L # n, Zni nEN } of random
fuzzy sets and increasing sub-o —algebras will be called a ad_aptive
random fuzzy process if # 2 — F"(X) is a = n-measurable integrably
bounded random fuzzy set for each n&N. A random variabie T ¢ 0 —T_ﬁ

is called a stopping time if [+ = n] = {0 &€Q ;3 = (@) =n }€2 .. tor

each n€ N. For a stopping time © , we define a o -algebra E © -as

Tz = { AEX ; Ah[t =n] €Z ., n€EN }

Definition 3.1. A fuzzy submartingale (supermartingale) is a adaptive
random fuzzy process { # n, £ n; n&N } such th;at, tor ¥V m, n with m<n,
EWe/Zo) e (E@o/Zad <uw)  ae.

If { #n, Zns n€N} is both a submartingale and a supermartingale. it

is called a fuzzy martingale.

Obviously; { # n, T n3 nEN } is a fuzzy submartingale (supermart-
ingale) iff {Lz (4 n), £ ns n€EN} is a set-valued submartingal (super-—
martingale) for each = €10, 1! ( see |4, 5, 8] ).

To investigate the properties of fuzzy maﬁtingales, we only consider
the case of fuzzy subr-tingale because there are corresponding results

for fuzzy supermartingales.

Theorem 3.1. Suppose { U n, £ s NEN } is a fuzzy submartingale,
s and t are two finite stopping time with s < t. Then
E(}‘-t/z-)>“- a.e.

To prove this theorem, we need the following lemmas:

Lemma 3.1. Suppose {# n, = 5 n&N} is a-adaptive random fuzzy process,
# is a random fuzzy set. 1f we define e = u , then for any stopping

time © , # © is a £t -measurable random fuzzy set.

Lemma 3.2. Suppose { fn, = n3 nEN } is a set—?aluéd subrtingale,
s and t are two stopping time with s << t. Then

Ve omit the proofs of lemma 3.1 and lemma 3.2.

Proof of Theorem 3.1. It follows from lemma 3._1 that u « is = tw
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able and # o is = .-measurable for the finite stopping time s aﬁd- t. we
also can show that # « and u . are both integr-ablﬁr bounded.  So we have

K (x) = supogagi{ @ ; x€Le (u;) }

and E(u «/Z ) (x) = supocw<a{ @ 5 x€E(La (& <J)/Z 2) }

But for each « € [0, 1], { La (# »n), £ n; n€EN} is a set submartingale.

By lemma 3.2, we get E(Lz (4 )/ a) D L« ()-ts) a.e. Hence we have
Ew /22 > ua ae. | Q.E.D.

Now we consider the convergence of fuzzy martingales. First, we

discuss the 8 —-convergence, we have

Theorem 3.2. Let { # n, £ ns NEN } be a fuzzy submartingale and
an integrably bounded random fuzzy set. Ifllp »n — & i — U,
then V M n —=8 - n a.e.

Where the norm Il . ll . is the L* (R, P; X)-norm.

Proof. Since ll# n = u llu — 0, we know that for ¥V & > U and
¥ o >0, there exists natural number N su'ch that for ¥V n > N,
lgn-u lle<aeo | |
But Plo €Q;: suprswllen —u Il > o }
< lin SUPn>a 1/0 . Sse It n — p Il dP

< SWr>x l/o. . lppn —p Il = 1/0 .SuPr>allit » — p o

vhere S¢ = { mEQ‘: SWrswllt o = Il > 0 3}, Hence,
Plo € : suén;qll N | > s 3
< 1/0 .SUPrsall i n - & ||x_.< 1/0c .8 ¢ =8 , |
That is B =8 — pn a.e. U.E.D.

Finally, we discuss the « -cdnver-gence of fuzzy narvtingale‘s:
Theorem 3.3. Suppose { # n, T nt NEN } is a tuzzy. submr-t’irigale.
If supn>1Ell # n(@) lly < oo, then there exists an integrably bounded |
random fuzzy set u : Q@ — F*(X) such that g n —= — u a.e. and
E(}l/zn) > un ‘a.e. (VneEN)

Proof. For each = €10, 1], it follows from the conditions ot this -
theorem that { Lz (u ‘_.-;). Zn.:n€EN} isa set:-ua!ued submartingale and
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supn>1Ell L (1 ») 1 < @=. Using [8,.theorem 9.5.8), we know that there
exists an intesrably bounded random set ta : £2 — coK(X) such that
da( Le (), fa ) =~ 0 a.e.
Since & <f ====> La(n n) = L8 (u n), we have « < B ===
fa 2O f8 , i.e. fa ( osasx) are nested. If we let
# () (x) = supogug: { @ 5 X€EFfz (o) }
then u : @ — F*(X) is an integrably bounded random fuzzy set and
Le (0 ) (@) = fx () (Ve € [0, 1))
Hence du(Lla (u ), La(u) ) — U a.e. (¥ e« € [0, 1J). ‘lhat is
B on —x == u P-a.e
Further, for V t, n€N with n < m, since { B n, Zns n&EN } is a
fuzzy martingale, we have ' |
Ew o/Zn) > un
Let m — ==, it follows theorem 2.4 that
Ew/Z.) > un a.e. lQ.E.D.
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