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In this paper, the rclationship between probability measurcs and d—additive fuzzy
mcasures is uscd to give the definition of the product mcasurse of A—additive fuzzy mcas-
ures and Fubini’s thcorem is discusscd. A Lebesgue deccomposition—like theorem,
kolmogorov’s zero—one law and the important Borel-Cantclli lemma, for i—additive fuzzy
mcasures, are established.

1. Fuzzy intcgral
Let X be a nonempty set and Ict T be a o—algebra on X. A set function u from I to
[0,1] is called a fuzzy mecasurc on I [5] il it satisfics the following conditions:

(1) ued)=0, (.10
n(X)=1; :
(2) ifA,BE€ X and AcB, then u(A) < u(B); (1.2)
(3) if{A,}is a monotone sequcnce of scts in Z, then
limp(A )= p(limA;). ' ’ _ (1.3)

Let A€ (~1,4+00), A5~ 0, be a rcal number. A fuzzy mcasurc g on I is said to a
A—additive fuzzy measure on I [5], if whenever A, B€ X and A(\B= ¢, then
B(AUB)= u(A)+u(Br+Au(A)u(B) (1.4)
holds.
We are ablk to prove that a fuzzy mcasurc p on I is a A~additive fuzzy mcasure, if and
only if, for cvery sequence {A, } of disjont sets in X, we have ' ’
u(UA o= T+ ama n-1]

aml

There exists a rclationshlp bctwcen probability measurcs and A-additive fuzzy mcas-
urcs. ’

If p is a A—additive fuzzy mcasurc on Z, then ‘

u’ 2 =log(l + Au)/ log(1 + 2) (1.5)
is a probabilitity measurc on . Converscly, if u° is a probability mcasurc on Z, then
| TR B Ty

is a A—additive fuzzy measure on E [2}, [6].

Thus we can usc the relation to give the dcﬁmuon of a fuzzy mtcgral

Let n be a l-adduwc l’uﬂy measurc on 2 and let £ X=={0,1] bc a Z-mcasurnblov
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function. For an. arbitrary A € T we dcfinc

ffdu: - _% +%(l+1)[ﬂ+u)/bm+i)du' (1.6)
A ' '

and name the quantity the y—intcgral of over A [3).

2. Product mcasurcs of —additive fuzzy mcasures
Definition 1. Lct (X,,X,) and (X,,X,) be mcasurablc spaces. Lct 4 and » be A—additive fuzzy
measures on £ and I,, respectively, with the same parameter 4. We say that A—additive fuz-
zy mecasurcon X, X X,

Bxol = =23+ D" @
is a product measurc of A—-additive fuzzy mcasurcs u and v, where u°and v°, as in (1.5), arc
probability mcasurcs on I,and Z,, respectively, and 4° x o° denotes product measure on I,
x Z,in classical measure theory.

Supposc that W={A, X A,|A, € ,,A,€ I,}, then it is a secmiring and I, x Z,is a g—al-
gebra gencrated by W, IFA; X A,€ ¥, then '

log(1 + Au x oA, xA,)) log(l+ Au(A ) log(1 + 4v(A)))
log(1 + A) T Tlog(1+4) | log(l+4)

(2.2)

holds.
Theorem 1. Il y is a A—additive fuzzy mcasure on I, x X,and satisfics (2.2), then y=pu X v.
We now give a statement of Fubini’s theorem for product measures which has been de-
fined above (2.1).
Theorem 2. Supposc that [: X, x X;~~[0,1]is a T, x £,—mcasurablc function and A x A€
¥. then
(1) theintcgrals

IRX,.xzmv 'ff(xpx,)du,

AI Al

are I,—mecasurable function and £;—~mcasurablc function, respectively.
(2) the following equation holds:

[t )dndo = [ au [ e, x, )0 = [ao [ i, x, 0

A xA, A A Ay A

3. Decomposition of ~additive fuzzy measurcs
The following thcorcm prescnts a Lebesgue decomposition—like thcorem for
A—additive fuzzy mcasures
Theorem 3. Let y. v be 1—additive fuzzy mcasurcs on X , then there cxist two set functions
9 9, % E~=[0,1] with the propertics (1.1)~(1.4) such that
v=ptotlow,, v.<<p, o ]pu
and this decomposition is unique.

4. Indcpendcnt fuzzy cvents :
Definition 2. Lot 4 be a A-additive fuzzy mcasurc on .
(1) Let A;, A=, A €Z, then we say that A;, A, -, A,arc mutually g—inde-
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pendent if, for2sm<nand1<i,<i,<---<in$n. we have
u(ﬂA )=—-+ (1+1)

k=1

'(2) Let © be a index sct and for arbitrary §€ ©, A,€ I. Then we say that {A,: 0€
©} is a mutually u—~indcpendent collection if cach of its finite subcollection is mutually
p—independent. ' o

(3) Let © be a index set and for arbitrary € ©, W,cX. Then we say that {W,: 0 €
©} is a mutually u—~independent family if {Ay: A € ¥, 0€ B8}, for each choicc of
A, from Wy, is a mutually p—independent collection.

Theorem 4. Let {A 5 n2> 1} be a mutually u— independent collection, then for

1 tos) + Au(A, )/ Bon(t + 21"

cach Ae{\a(A,, A_, ), #(A) is cither 0 or L.

Theorem 5. Let {A ; n> 1} be a mutually p— indcpendent collcction. then

w(limA ) is cither 0 or 1.

L ad

Theorem 6. Let # be a A— additive fuzzy mcasurc on T and let { A_} be a

scquence in E, we have the following results:

(1) If EuA,)< + oo, then p(limA )=0;

aml a-s0

() If { Al;n > 1} is a mutually u — indcpendent collection and I u(A-)= + ©

aml|
then p(limA‘)=’l.
Corollary. Lct x bea A—additive fuzzy mecasure on T and {A;n> 1} be a mutually p—inde-
pendent collection in I, then

(1 p(l—i:nA_)=0, ifr ;:u(An)< + .

a--w swl

2 u(;i;A_)sl, iff ;Z;a(A_)= + 0.

R [}
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