ON THE THEOREMS FOR A-ADDITIVE FUZZY MEASURES

ZHANG QIANG

Department of Economics
Hebei University
Baoding, Hebei, China

In this paper, the relationship between probability measures and λ -additive fuzzy measures is used to give the definition of the product measures of λ -additive fuzzy measures and Fubini's theorem is discussed. A Lebesgue decomposition-like theorem, kolmogorov's zero-one law and the important Borel-Cantelli lemma, for λ -additive fuzzy measures, are established.

1. Fuzzy integral

Let X be a nonempty set and let Σ be a σ -algebra on X. A set function μ from Σ to [0,1] is called a fuzzy measure on Σ [5] if it satisfies the following conditions:

(1)
$$\mu(\phi) = 0$$
, (1.1) $\mu(X) = 1$;

(2) if A, B
$$\in \Sigma$$
 and A \subset B, then $\mu(A) \leq \mu(B)$; (1.2)

(3) if $\{A_n\}$ is a monotone sequence of sets in Σ , then

$$\lim_{n\to\infty}\mu(A_n)=\mu(\lim_{n\to\infty}A_n). \tag{1.3}$$

Let $\lambda \in (-1,+\infty)$, $\lambda \neq 0$, be a real number. A fuzzy measure μ on Σ is said to a λ -additive fuzzy measure on Σ [5], if whenever A, B $\in \Sigma$ and A \cap B = ϕ , then

$$\mu(A \cup B) = \mu(A) + \mu(B) + \lambda \mu(A) \mu(B) \tag{1.4}$$

holds.

We are able to prove that a fuzzy measure μ on Σ is a λ -additive fuzzy measure, if and only if, for every sequence $\{A_n\}$ of disjoint sets in Σ , we have

$$\mu(\bigcup_{n=1}^{\infty} A_n) = \frac{1}{\lambda} \left[\prod_{n=1}^{\infty} (1 + \lambda \mu(A_n)) - 1 \right]$$

There exists a relationship between probability measures and λ -additive fuzzy measures.

If μ is a λ -additive fuzzy measure on Σ , then

$$\mu^{\bullet} := \log(1 + \lambda \mu) / \log(1 + \lambda) \tag{1.5}$$

is a probability measure on Σ . Conversely, if μ^* is a probability measure on Σ , then

$$\mu := -\frac{1}{1} + \frac{1}{1}(1 + \lambda)^{\mu}$$

is a λ -additive fuzzy measure on Σ [2], [6].

Thus we can use the relation to give the definition of a fuzzy integral.

Let μ be a λ -additive fuzzy measure on Σ , and let Γ : X- $\{0,1\}$ be a Σ -measurable

function. For an arbitrary $A \in \Sigma$ we define

$$\int f d\mu := -\frac{1}{\lambda} + \frac{1}{\lambda} (1+\lambda) \int_{-1}^{(1+\lambda f)/\log(1+\lambda) d\mu}$$
(1.6)

and name the quantity the μ -integral of over A [3].

2. Product measures of \(\lambda\)-additive fuzzy measures

Definition 1. Let (X_1, Σ_1) and (X_2, Σ_2) be measurable spaces. Let μ and v be λ -additive fuzzy measures on Σ_1 and Σ_2 , respectively, with the same parameter λ . We say that λ -additive fuzzy measure on $\Sigma_1 \times \Sigma_2$

$$\mu \times v := -\frac{1}{\lambda} + \frac{1}{\lambda} (1+\lambda)^{\mu^{\bullet} \times \nu^{\bullet}} \tag{2.1}$$

is a product measure of λ -additive fuzzy measures μ and v, where μ^* and v^* , as in (1.5), are probability measures on Σ_1 and Σ_2 , respectively, and $\mu^* \times v^*$ denotes product measure on $\Sigma_1 \times \Sigma_2$ in classical measure theory.

Suppose that $\Psi = \{A_1 \times A_2 | A_1 \in \Sigma_1, A_2 \in \Sigma_2\}$, then it is a semiring and $\Sigma_1 \times \Sigma_2$ is a σ -algebra generated by Ψ . If $A_1 \times A_2 \in \Psi$, then

$$\frac{\log(1+\lambda\mu\times v(A_1\times A_2))}{\log(1+\lambda)} = \frac{\log(1+\lambda\mu(A_1))}{\log(1+\lambda)} \cdot \frac{\log(1+\lambda v(A_2))}{\log(1+\lambda)}$$
(2.2)

holds.

Theorem 1. If y is a λ -additive fuzzy measure on $\Sigma_1 \times \Sigma_2$ and satisfies (2.2), then $\gamma = \mu \times v$.

We now give a statement of Fubini's theorem for product measures which has been defined above (2.1).

Theorem 2. Suppose that $f: X_1 \times X_2 \rightarrow [0,1]$ is a $\Sigma_1 \times \Sigma_2$ -measurable function and $\Lambda_1 \times \Lambda_2 \in \Psi$, then

(1) the integrals

$$\int_{\Lambda_1} f(x_1,x_2) dv \qquad \int_{\Lambda_1} f(x_1,x_2) d\mu.$$

are Σ_1 -measurable function and Σ_2 -measurable function, respectively.

(2) the following equation holds:

$$\int_{A_1 \times A_2} f(x_1, x_2) d\mu dv = \int_{A_1 \times A_2} d\mu \int_{A_1} f(x_1, x_2) dv = \int_{A_2 \times A_2} dv \int_{A_1} f(x_1, x_2) d\mu$$

3. Decomposition of \(\lambda\)-additive fuzzy measures

The following theorem presents a Lebesgue decomposition-like theorem for λ -additive fuzzy measures

Theorem 3. Let μ . \forall be λ -additive fuzzy measures on Σ , then there exist two set functions v_e , $v_s : \Sigma \rightarrow [0,1]$ with the properties (1.1)-(1.4) such that

$$v = v_c + v_s + \lambda v_c v_s$$
, $v_c < < \mu$, $v_s \perp \mu$

and this decomposition is unique.

4. Independent fuzzy events

Definition 2. Let μ be a λ -additive fuzzy measure on Σ

(1) Let A_1 , A_2 , $A_n \in \Sigma$, then we say that A_1 , A_2 , ..., A_n are mutually μ -inde-

pendent if, for $2 \le m \le n$ and $1 \le i_2 \le i_2 \le \dots \le i_m \le n$, we have

$$\mu(\bigcap_{k=1}^{m} A_{ik}) = -\frac{1}{\lambda} + \frac{1}{\lambda} (1+\lambda)^{\frac{m}{m}} \frac{\log(1+\lambda\mu(A_{ik})/(\log(1+\lambda))^{m}}{2}$$

- (2) Let Θ be a index set and for arbitrary $\theta \in \Theta$, $A_{\theta} \in \Sigma$. Then we say that $\{A_{\theta} : \theta \in \Theta\}$ is a mutually μ -independent collection if each of its finite subcollection is mutually μ -independent.
- (3) Let Θ be a index set and for arbitrary $\theta \in \Theta$, $\Psi_{\theta} \subset \Sigma$. Then we say that $\{\Psi_{\theta} : \theta \in \Theta\}$ is a mutually μ -independent family if $\{A_{\theta} : A_{\theta} \in \Psi_{\theta}, \theta \in \Theta\}$, for each choice of A_{θ} from Ψ_{θ} , is a mutually μ -independent collection.

Theorem 4. Let $\{A_n; n \ge 1\}$ be a mutually μ -independent collection, then for

each
$$A \in \bigcap_{n=1}^{\infty} \sigma(A_n, A_{n+1}, \dots)$$
, $\mu(A)$ is either 0 or 1.

Theorem 5. Let $\{A_i; n \ge 1\}$ be a mutually μ -independent collection, then

 $\mu(\lim A_n)$ is either 0 or 1.

Theorem 6. Let μ be a λ -additive fuzzy measure on Σ and let $\{A_{\alpha}\}$ be a sequence in Σ , we have the following results:

(1) If
$$\sum_{n=1}^{\infty} \mu(A_n) < +\infty$$
, then $\mu(\lim_{n\to\infty} A_n) = 0$;

(2) If $\{A_n; n \ge 1\}$ is a mutually μ - independent collection and $\sum_{n=1}^{\infty} \mu(A_n) = +\infty$ then $\mu(\lim_{n \to \infty} A_n) = 1$.

Corollary. Let μ be a λ -additive fuzzy measure on Σ and $\{A_n; n \ge 1\}$ be a mutually μ -independent collection in Σ , then

(1)
$$\mu(\overline{\lim}_{n\to\infty} A_n) = 0$$
, iff $\sum_{n=1}^{\infty} \mu(A_n) < +\infty$.

(2)
$$\mu(\lim_{n\to\infty} A_n) = 1$$
, iff $\sum_{n=1}^{\infty} \mu(A_n) = +\infty$.

References:

- [1] P. R. Halmos, Measure Theory, Van Nostrand New York (1967).
- [2] R. kruse, A note on 1-additive suzzy measures, Fuzzy Sets and Systems 8 (1982), 219-222.
- [3] R. kruse, Fuzzy integrals and conditional fuzzy measures, Fuzzy Scts and Systems 10(1983), 309-313.
- [4] R. kruse, On the entropy of λ -additive fuzzy measures, J. math. Anal. Appl 122 (1987), 589-595.
- [5] M. Sugeno, Theory of fuzzy integrals and its applacations, Ph. D. Thesis, Tokyo Institute of Technology (1974).
- [6] Wang Zhenyuan, Une classe de mesures floues-les quasi-mesures, BUSEFAL, Toulouse, France, Vol.6 (1981) 28-37.
- [7] L. A. Zadeh, prbability measures of fuzzy events, J. Math. Anal. Appl. 23 (1968), 421-427.