ON F-SUSLIN SETS

Deli Zhang

Dept. of Math, Jilin Prov. Inst. of Education, Changchun, Jilin, 130022. P.R.China

Caimei Guo

Dept. of Basic Science, Changehun Univ. Changehun, Jilin, 130022, P.R.China.

Abstract: In the paper, the concept of F-Suslin sets (fuzzy Suslin sets) is given, the results similar to classical Suslin sets summarized in [1] are obtained.

Introduction: It is well known that Suslin sets [1] (or Analytic sets [2]) is an important branch of pure math. and play much important role in modern analysis, theory of measure, etc. [1, 2]. Since Prof. Zadeh built the theory of fuzzy sets [4], it has entered almost all fields of classical math. and lead to many fuzzy branches, such as F-topology, F-measure, and so on. The paper's aim is generalizing the classical Suslin sets to fuzzy circustance. The authors hope it can become the beginning of the investigation of F-Suslin sets theory.

Let X be a set, $\mathcal{F}(X)$ be the fuzzy power set. For $\widetilde{X}\subset\mathcal{F}(X)$, let $\widetilde{X}d$, $\widetilde{X}s$, $\widetilde{X}s$ \widetilde{X}_{σ} denote the classes obtained by applying to the element of \widetilde{X} the operations of finite intersections(d), countable intersections(δ), finite unions(s), and countable unions(σ), respectively, the symbols $\widetilde{X}_{\sigma\delta}$, \widetilde{X}_{ds} ,..., and so on will denote the classes obtained by successive application of the indicated operations in the obvious (left to right). \widetilde{X} is called a F-paving on X iff ϕ , X belong to \widetilde{X} , then the pair (X,

 \widetilde{X}) will be called a F-paved set. Let (X, \widetilde{X}) and (Y, \widetilde{Y}) be two F-paved sets, we denote by $\widetilde{X} \boxtimes \widetilde{Y}$ the class of all sets of the form $A \boxtimes B$ where $A \in \widetilde{X}$, $B \in \widetilde{Y}$, and $(A \boxtimes B)(x, y) = A(x) \triangle B(y)$.

Definitions:

- 1. A F-Suslin scheme on a set X is a function $\boldsymbol{\mathcal{E}}$ from the set P into $\mathcal{F}(X)$, where P is the set of multi-index $p=(p_i, p_i, \dots, p_s)$ which is a finite ordered set of natural numbers N. An alternative way thinking of a F-Suslin scheme is as an indexed family $\boldsymbol{\mathcal{E}} = \{E(p_i, p_i, \dots, p_s) \in \mathcal{F}(X): p_i \in \mathbb{N}\}$.
- 2. The F-Suslin operation on $\mathcal{F}(X)$ is the function α from the collection of all F-Suslin schemes on X to $\mathcal{F}(X)$ defined by

$$\alpha (\xi) = \bigcup_{p \in \mathbb{N}^{\infty}} \kappa \in \mathbb{N} \qquad \xi(p_i, p_i, \dots, p_i)$$

where N^{∞} is the set of all sequences of natural numbers. The value of α at \mathcal{E} is called a F-Suslin set, that is, the collection of F-Suslin sets is the range of α . Corresponding the other view of F-Suslin scheme , we use a different symbol A(·) for the F-Suslin operation, then

A(
$$\mathcal{E}$$
)= \bigcup \bigcap $E(p_i, p_i, \dots, p_i)=\bigcup$ \bigcap $\mathcal{E}(p_i, p_i, \dots, p_i)$
 $p \in \mathbb{N}^n$ $k \in \mathbb{N}$

Example: Let $E \in \mathcal{F}(X)$, consider the constant F-Suslin scheme $\mathcal{E}(\cdot) \equiv E$ then $\sigma(\mathcal{E}) = E$, so that every fuzzy set is a F-Suslin set. The elements in $A(\widetilde{X})$ is called \widetilde{X} -F-Suslin sets.

3. Let (X, \overline{X}) be a paved set (nonfuzzy), the paving \overline{X} is said to be semicompact if every countable subclass of elements of \overline{X} has the finite intersection property, i. e. if for every sequence $\{A_i : i \in \mathbb{N}\} \subset \overline{X}$, $\bigcap_{K=1}^r A_i = \emptyset$ for each $r \in \mathbb{N}$,

together imply that $\bigcap_{\kappa=1}^{\infty} A \neq \phi$.

Example: Let $N_p = \{q \in \mathbb{N} : q \mid k=p\}$, where $q \mid k$ is the initial segment (q_i, q_i, \dots, q_i) , $p = (p_i, p_i, \dots, p_i) \in P$. Further, let \overline{N}_p denotes the set $\{\varphi, N \mid N_i, p \in P\}$, obviously, \overline{N}_p is the semicompact paving on N [1].

4. Let (X, \widetilde{X}) and (Y, \widetilde{Y}) be two F-paved sets. For an element $C \in \widetilde{X} \times \widetilde{Y}$ we define $Pr.C \in \mathscr{F}(X)$ as followed:

$$\Pr_{\mathbf{x}} C(\mathbf{x}) = \bigvee_{\mathbf{y} \in \mathbf{Y}} C(\mathbf{x}, \mathbf{y}) \qquad (\mathbf{x} \in \mathbf{X}).$$

Main result:

The following results are the extension of the corresponding results in [1], their proofs are not very difficult by comparing with the proofs in [1] and applying the operations of fuzzy sets[4].

Proposition 1. Let (X, \widetilde{X}) be a F-paved set, then $\widetilde{X} \subset A(\widetilde{X})$. Proposition 2. Let (X, \widetilde{X}) be a F-paved set, s.t. $\widetilde{X} = \widetilde{X} d$. Then for any $S \in \mathcal{F}(X)$, the following statements are equivalent: (i). $S \in A(\widetilde{X})$;

- (i). S=Pr_XC. where $C \in (X \times \overline{\mathbb{N}}_p)$
- (iii). There exists a set Y with a semicompact paving (nonfuzzy) \overline{Y} and a set C belongs to $(\widetilde{X} \times \overline{Y})_{\sigma \delta}$, s.t. S=Pr_xC.

Proposition 3. If (X, \widetilde{X}) is a F-paved set such that $\widetilde{X}=\widetilde{X}d$, then the class $A(\widetilde{X})$ of $\widetilde{X}-F$ -Suslin sets is closed under the operations of countable intersections and countable unions.

Proposition 4. Let (X, \widetilde{X}) and (Y, \widetilde{Y}) be two F-paved sets, then

 $A(\widetilde{X}) \times A(\widetilde{Y}) \subset A(\widetilde{X} \times \widetilde{Y})$

Proposition 5. Let (X, \widetilde{X}) be a F-paved set, (Y, \widetilde{Y}) be a paved set (nonfuzzy), and \widetilde{Y} is semicompact, then for all $S \in A(\widetilde{X} \times \widetilde{Y})$, we have Pr_XS is in $A(\widetilde{X})$.

Proposition 6. Let (X, \tilde{X}) be a F-paved set, then

 $A(A(\tilde{X}))=A(\tilde{X})$

That is, $\widetilde{X}\text{-}F\text{-}Suslin$ sets is closed under the F-Suslin operation.

Proposition 7. Let (X, A, m) be a complete measure space, and \widetilde{A} is the family of all A-measurable fuzzy subsets of X i. e.

 $\widetilde{A}=\{A\in\mathcal{F}(X): \mu_{\bullet}: X\rightarrow [0, 1] \text{ is } A\text{-measurable}\}.$

Then we have $A(\widetilde{A}) = \widetilde{A}$

That is, the class of A-measurable fuzzy sets is closed under the F-Suslin operation.

Remark: when we use the concepts of F-topology, defining F-Analytic sets as the continuous image of F-Suslin sets, we can discuss the theory similarly, and the authors are working on the problem, some results (such as separation properties [2]) have been obtained.

Ref.

- E. Klein & A. C. Thompson, Theory of Correspondences, John & wiley NewYork 1984.
- C. A. Rogers & etc., Analytic Sets, Academic Press, NewYork 1984.
- 3. D. Dubois & H. Prade, Fuzzy Sets and Systems, ibid, 1980.
- 4. L. A. Zadeh, Fuzzy sets, Inform. and control 8(1965), 338-353.