Fuzzy Pre-semi-open subsets

Ma Bao-guo

Department of Mathematics, Yanan University, Yanan 716000, China

Abstract: In this paper, fuzzy pre-semi-open subsets in a fuzzy topological spaces are introduced and studied. In addition, the relation between it and the other fuzzy semi-topological subsets lastly, we describe fuzzy S*-closed spaces in terms of fuzzy pre-semi-open sets.

Keywords: Fuzzy semi-open sets; fuzzy pre-semi-open sets; fuzzy semi-regularly semi-open sets; S*-closed spaces.

Thoughout the paper (X,T) or simiply X stands for a fuzzy topological space (fts, for short) in Chang's [2] sense. A fuzzy point in X with support $x \in X$ and value α (0< $\alpha \le 1$) is denoted by x_a. For a fuzzy set A in X, the notations A-, Ao, and (1-A) are used to respectively stand for the closure, interior and complement of A, whereas the constant fuzzy sets taking on respectively the values 0 and 1 on X are designated by 0x and 1x respectively. A fuzzy set A in X is said to be q-coincident with a fuzzy set B written as A q B, iff there is $x \in X$ such that A(x)+B(x)>1 [4]. Abbreviating the "neighbourhood" by nbd, we say that A is a semi-q-nbd of a fuzzy point x a iff there exists a fuzzy semi-open set V such that $x_{\alpha q}V \leq A$ [3]. The fuzzy semi-closure of a fuzzy set A in X, to be denoted by A, is the union of all fuzzy points x such that every semi-open semi-q-nbd of x a is q-coincident with A. The union of all fuzzy semi-open sets contained in a fuzzy set A is called the fuzzy semi-interior of A, to be denote by Ao. Clearly, for any fuzzy set A, $A^{o} \le A_{o} \le A$, and also, $A_{o} = 1-(1-A)$. For an fts X, we shall denote the set of all fuzzy open, closed, semi-open and semi-closed sets by FO(X), FC(X), FSO(X) and FSC(X). respectively.

Lemma 1 Let A be any fuzzy set in X. Then $A^{\circ} \leqslant A_{\circ} \leqslant A \leqslant A_{-} \leqslant A^{-}$.

Lemma 2 Let A be any fuzzy set in X. Then

- (a) $(A_{-})^{\circ} = A^{-\circ}$,
- (b) $A^{o-}=(A_o)^-$,
- (c) $(A_{-})^{-}=(A^{-})_{-}=A^{-}$,
- (d) $(A_0)^0 = (A^0)_0 = A^0$,
- (e) $(A_{-})^{o} \le A^{-o} \le A_{-o} \le (A^{-})_{o}$,
- (f) $(A^{o})_{-} \leqslant A_{o-} \leqslant A^{o-} \leqslant (A_{o})^{-}$.

In [1], a fuzzy set A in X is defined to be fuzzy pre-open iff $A \le A^{-o}$, Let us now define as follows.

Definition 3 A fuzzy set A in X is said to be fuzzy pre-semiopen iff $A \le A_{-0}$.

We shall use the notations FPO(X) and FPSO(X) to represent the sets of all fuzzy pre-open sets and fuzzy pre-semi-open sets in X respectively.

Obviously, we now have the following.

Thorem 4 For any fts X,

- (a) $FO(X) \subset FPO(X) \subset FPSO(X)$,
- (b) $FO(X) \subset FSO(X) \subset FPSO(X)$.

The iverse of Theorem 4 is not valid in general.

Example Let X be any non-empty set, consider the fuzzy set A, B, C, D, give by A(x)=0.25, B(x)=0.6, C(x)=0.2, D(x)=0.7, for all $x \in X$. Then for the fts (X,T), where $T=\{Ox, 1x, A, B\}=FO(X)$. We have $C \in FPO(X)$, $C \in FO(X)$, $C \in FSO(X)$, $D \in FPSO(X)$, $D \in FPSO(X)$, and $D \in FSO(X)$.

Theorem 5 For any fts X,

- (a) A is fuzzy pre-open iff there exists a fuzzy open set V in X such that $A \le V \le A^-$.
 - (b) A is fuzzy pre-semi-open iff there exists a fuzzy semi-

open set U in X such that $A \le U \le A_{-}$.

Proof. (a) Let $A \in FPO(X)$ then $A \leqslant A^{-o}$, we put $V=A^{-o}$ be a fuzzy open set and $A \leqslant A^{-o} = V \leqslant A^-$. Conversely, if $V \in FO(X)$, such that $A \leqslant V \leqslant A^-$, then $A \leqslant V = V^o \leqslant A^{-o}$ and thus $A \in FPO(X)$.

(b) Similar to that of (a) and omitted.

Definition 6 A fuzzy set A in X is said to be fuzzy semi-regularly semi-open (semi-closed) iff $A=A_{-0}$ (resp. $A=A_{0-}$).

For an fts X, we shall denote the set of all fuzzy semi-regularly semi-open sets and semi-regularly semi-closed sets by FSRSO(X) and FSRSC(X).

Theorem 7 Let A be any fuzzy set in X. Then

- (a) $A \in FSRSC(X)$ iff $(1-A) \in FSRSO(X)$.
- (b) $A \in FSRSO(X)$ iff there exist a fuzzy semi-open set B in X such that $A=B_{-}$.
- (c) $A \in FSRSC(X)$ iff there exists a fuzzy semi-closed set C in X such that $A=C_o$.
 - (d) $A \in FSRSC(X)$ then $A \in FSO(X)$.

Proof. They are clear from the above definition 6.

Theorem 8 Let A be any fuzzy set in X. Then

- (a) If $A \in FPSO(X)$ then $A \in FSRSC(X)$.
- (b) If $(1-A) \in FPSO(X)$ then $A_o \in FSRSC(X)$.
- (c) $A \in FPSO(X) \cap FSC(X)$ iff $A \in FSO(X) \cap FSC(X)$.

Proof. (a) Let $A \in FPSO(X)$ then $A \leqslant A_{-o}$ and hence $A_{-} \leqslant A_{-o-}$. Again, $(A_{-})_{o-} \leqslant A_{--} = A_{-}$ thus we have proved $A_{-} = A_{-o-}$. Therefore it follows from Difinition 6 that $A_{-} \in FSRSC(X)$.

- (b) Let $(1-A) \in FPSO(X)$ by (a) we have $(1-A)_{-} \in FSRSO(X)$, thus $A_0=1-(1-A)_{-}=1-(1-A)_{-}=[1-(1-A)_{-}]_{-}=A_0$. Therefore $A_0=A_0=0 \in FSRSO(X)$
 - (c) $A \in FPSO(X) \cap FSC(X)$ iff $A_{-}=A \leqslant A_{-}=A_{o}$ iff $A \in FSO(X) \cap FSC(X)$.

Theorem 9 Let A be any fuzzy set in X, then $A \in FPSO(X)$ iff $A = A_{-o}$.

Proof. Let $A \in FPSO(X)$, to prove $A=A_0$, by Lemma 2 it is

sufficient to prove that $A^-\leqslant A_{-o}$. Since $A\in FPSO(X)$ then $A^-\leqslant (A_{-o})^-$, but $A_{-o}\in FC(X)$, thus $A^-\leqslant A_{-o}$. Conversely, is obvious.

Definition 10 A fuzzy point x_{α} is said to be a fuzzy semi- δ -cluster point (semi- θ -clustor point) of a fuzzy set A in X iff $U_{-0}qA$ (resp, $U_{-0}qA$) for every fuzzy semi-open semi-q-nbd U of x_{α} . Then union of all fuzzy semi- δ -cluster points (resp. semi- θ -cluster points) of a fuzzy set A in X is denoted by $[A]_{\alpha,\delta}$ (resp. $[A]_{\alpha,\theta}$). A is fuzzy semi- δ -closed (resp. semi- θ -closed) iff $A=[A]_{\alpha,\delta}$ (resp. $A=[A]_{\alpha,\theta}$).

Theorem 11. Let A be any fuzzy set in X, then $A_{-\leqslant}[A]_{a,b}\leqslant[A]_{a,e}$

Proof. By Definition 10 is obvious.

Lemma 12 If A is any fuzzy set and B a fuzzy semi-open set in an fts X, such that $A\overline{q}B$, then $A_{\overline{q}}B$.

Proof. If there exists an $x \in X$ such that $A_{-}(x)+B(x)>1$, then putting $A_{-}(x)=\alpha$, we see that B is a fuzzy semi-open semi-q-nbd of x_{α} with $A\overline{q}B$, whereas $x_{\alpha} \in A_{-}$. Thus we arrive at a contradiction.

Thorem 13 Let $A \in FPSO(X)$, then $A_{-}=[A]_{\bullet,\bullet}=[A]_{\bullet,\bullet}=[A]_{\bullet,\bullet}$. Proof. To prove this it is sufficient to prove that $[A]_{\bullet,\bullet} \leqslant A_{-}$. Now if $x_{-} \in A_{-}$ then there exist a fuzzy semi-open semi-q-nbd U of x_{-} such that $U\overline{q}A$ and thus $U\overline{q}A_{-}$. But then $U_{-}\overline{q}A$ (since $A \in FPSO(X)$). Hence $x_{-} \in [A]_{\bullet,\bullet}$. Thus we have proved $[A]_{\bullet,\bullet} \leqslant A_{-}$.

Definition 14 [5] An fts X is said to be fuzzy S*-closed iff for every fuzzy semi-open cover $\{U_{\alpha}; \alpha \in \wedge\}$ of X, there exists a finite subset \wedge_{o} of \wedge such that $\{(U_{\alpha})_{-}; \alpha \in \wedge_{o}\}$ is a fuzzy cover of X.

Theorem 15 An fts X is fuzzy S*-closed iff for every fuzzy pre-semi-open cover $P=\{P_\alpha; \alpha\in \triangle\}$ of X, there exists a finite subset \triangle_o of \triangle such that $P_{-}=\{(P_\alpha)_-; \alpha\in \triangle_o\}$ is a fuzzy cover of X.

Proof. Let $P=\{P_\alpha; \alpha\in \Lambda\}$ be a fuzzy pre-semi-open cover of X, then for each $\alpha\in \Lambda$, $P_\alpha\leqslant (P_\alpha)_{-o}$, thus $P_{-o}=\{(P_\alpha)_{-o}; \alpha\in \Lambda\}$ is fuzzy semi-open cover of X, By fuzzy S*-closedness of X, for P_{-o} there exists a finite subset Λ_o of Λ such that $\{(P_\alpha)_{-o}; \alpha\in \Lambda_o\}$ is a fuzzy cover of X, and since for any $\alpha\in \Lambda$. $(P_\alpha)_{-o}=(P_\alpha)_-$, hence P_- there exist a finite subcover. Coversely, Since each fuzzy semi-open set is fuzzy pre-semi-open sets. Thus the conclusion is clear.

References

- [1] A.S. Mashhour, M.H. Ghanim and M.A. Fath Alla, On fuzzy non-continous mappings, Bull, Cal Math. Soc. 78(1986) 57-69.
- [2] C.L.Chang, Fuzzy topological spaces, J.Math. Anal. Appl. 24 (1968) 182-190.
- [3] B.Ghosh, Semi-continuous and semi-closed mappings and semi-connectedness in fuzzy setting, Fuzzy sets and system. 35 (1990) 345-355.
- [4] Pao Ming pu and Ying Ming Liu, Fuzzy topology I. Neighborhood structure of a fuzzy point and Moore Smith convergence, J.Math. Anal. Appl. 76 (1980) 571-599.
- [5] S.Malakar, On fuzzy semi-irresolute and strongly irresolute functions, Fuzzy sets and systems. 45 (1992) 239-244.