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A NEX STATISTICAL APPROACH TO IDENTIFICATION
OF FUZZY MODELS IN RANDOM ENVIRONMENT

Da Q. Qian and M. Mizumoto
Department of Management Engineering
Osaka Electro-Communication University
Neyagawa, Osaka 572, Japan

ABSTRACT: The aim of this paper is at the study of identification of fuzzy models
in random environment using statistical principle. A nev approach to this topic is
proposed. Numerical examples are taken up to show the usefulness of the approach
by comparing it with other methods. '

1. FUZZY RELATIONAL MODEL

o
-

Up to now a number of papers have appeared which are devoted to fuzzy modelling.
The fuzzy models are usually described by the use of fuzzy relational models,
i.e., the fuzzy relational models have the following forms:

Xn+1=X10X209. .. X.oR ' (1)

where Xi is an input fuzzy set of variable X; defined on the universe of discourse
X1 (i=1,2,...,n), Xn+: stands for the output fuzzy set of variable X,+; defined on
the universe of discourse Xn+1, R is a fuzzy relation expressing the relationships
existing between them and expressed on the cartesian product of X1, X2,..., Xn and
Xa+1. They areé represented by their membership functions

Kiv X1 => [0, 11 (i=1,2,...,n%1), R: XixKeX ... xXnXXn+1 =>[0, 1]

X" stands for the sup-min composition.

In this paper we will propose a new approach to identification of fuzzy models in
random environment. The usefulness of the approach is demonstrated by solving
numerical examples and comparing it with other methods used -in the examples.

2. DESCRIPTION OF THE IDENTIFICATION PROCEDURE

In (1), let the domain [xi1, Xim+1] of variable Xi(i=1,2,...,n+1) be divided into
m subdomains, i.e.,the jth subdomain of X; is [xij, Xij+t1), Xij+1=X;j+dxi,
dxi=(Xim+1-Xi1)/m, each subdomain [xi;, Xij+t) is denoted.  as
d(i, j),i=1.2,...,n+l, j=1,2,...,n. Therefore, the space of ntl dimensions can be
defined by the n+l variables, and each dimension corresponds to one of the n+l
variables and can be devided into m subdomains, in total, the space can be divided
into mnt! subspaces . consisting of
{d(l.jl),d(Z.jz).....d(n+1.in+1)}.j1‘—'1,2,...,m.ja=1.2,...,m.....jn+1=1,2,....m, as
the 3-dimensional space shown in Fig. I.

Then each of the 1 collected data groups (xi(k),x2(k),...,Xns1(k)}, k=1, 2,...,1, is
projected into a . corresponding 'subspace.  consisting . of ]
td(L j1).d(2, j2), ..., d(n+L, jo+1)},  where xi(K)Ed(i,ji). Assume - that  {xi(k),
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x2(k). ..., xn+1(kK)}(k=k1(s>.k2¢s),...kt¢sy) falls into the subspace s, we can
calculate the mean value vector of the subspace, {Vi(s), Va(s),....Vaes(s)}., Vi(s)=
Loxiisyr,..., ktesy xik)/t, s=1,2,..., n"*!. Furthermore, assume that there are t;
data groups falling into the subspace s,
({d (1, 31),d(2, j2), ..., d(n, ja).d{n+1, )}, j=1.2....., m), therefore, the frequence fs
in the subspace, s. {xi1€d(l,j1), x2€d(2,jz2)...., Xxn®d(n, jn) -> xn+1€d{(n+1, j)}, is
defined: t;/ X% ;=1...., m ti.

Finally, a set of reference sets ri; is defined, i=1,2,...,n+l,j=1,2,..., q, vwhere

rij is the jth reference set of the variable X;, and ri; (j=1,2,...,q) can cover

the domain [xi:,xim+1] of X;,the fuzzy relation R is generated via the following
formula:

R(s)=R(s-1)U(fsA(Vi(s) xVo(s)x. .. xVn(s)XVn+1(s))), s=2,3,..,mn*! (2)
RO =fsA(V1 (1) xVa (1) x. .. xVa (1) xVa+1 (1))

or

R(sY=R{s-1)U(Vi(s) xVa(s) % .. xVn(s) xVn+1{s)) fs> a threshold (3)
ROD=(Vi () xVa (1) X, .. XVn (1) xVa+1 (1))

where Vi(s) is the fuzzy set of variable V,(s) in subspace s, the Vi(s) is
represented by a vector [pi(s),pz2(s),..., Pq(s)] with respect to the reference sets
rij, each individual p;(s) is calculated via ri;{(V; (s))

The above identification procedure shows that the reliability of data should first

be evaluated by calculating the distribution of the data in space before they are
used to build the fuzzy relation R.

3. NUMERICAL EXAMPLES

Example 1: A collection of input-output data is as in Table 1. We will use three
approaches including ours to determine R that can match the data.

Table |

k input Xz (k) output Xz (k)

CO ~3 O N e GO O
N b B e BN D DD
I R X

Analysing the collection of data, we can find that the output is the direct ratio
of input if we assume that the pairs of data {3,1} and {4,1} are contaminated by
noise, therefore, we can guess that there is the rough relationship between input
and output described by pairs of data (1,1}, {2, 8},{4,3.5) and {5.5}. The
following is the applications of different approaches to this example and
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comparison of results of these approaches.

1). At first we determine 4 reference sets r; of X: and X2 (j=1,2,3,4) as in Fig.
2, then we can generate R according to the recursive formula:

RGO =R(-D UK () xKe (K) X, .. XKn(K) 3XKno1 (K)), ko2, 8,..,1 (4)
R(1)=X1 (1) xX2 (1) %, . xXa (1) xXa+1(1) o o

vhere Xi is the fuzzy set of variable X, (i={,2), the Xi is represented by a vector
[p1.p2, p3.pal] with respect to the reference sets, each individual p; is calculated
via r;(X;)(j=1,2,3.4). Using the above formula, the derived R is as follows:

1.00 0.25 0.25 0.25
0.50 0.75 0.75 0.25
0.75 0.50 0.75 0.25
0.25 0.25 0.25 1.00

By Xi?R, we can then infer the output Xz as follows:

Xe= [ 1.00 0.25 0.25 0.25 ] when X:=1l
X2= [ 0.50 0.75 0.75 0.25 ] when X:=2
Xe= [ 0.50 0.50 0.50 0.25 ] when X:=3
X2= [ 0.75 0.50 0.75 0.25 ] when Xz=4
Xe= [ 0.25 0.25 0.25 1.00 ] when X:=5

Finally, by using center of gravity method, we can get thé following results:

if Xz=1 then X2=2.14
if X:1=2 then X2=2.178
if X1=3 then X2=2.T1
if X:=4 then X2=2.63
if X1=5 then X2=3.86

2). At first using Leszczynski et al's fuzzy clusterxng method (1985) . for above 8

pairs of data in Table 1, we can get = the folloving' clusters: -
(1,2), (3.5), (4), (6), (1), (8). ‘According to Hirota et al’s.method (198! an -
then calculate the mean values of each cluster as in Table 2. . e
Table 2

k input Xz output X2

1 1.9 SIS

2 3.5 1.0

3 S 2 4 2

4 4 3

5 4 |

6 5 5

Using (4) for data in Table 2, R can be derived as follows:
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0.625 0.375 0.250 0.250
0.375 0.375 0.750 0.250
0.875 0.500 0. 750 0. 250
0.000 0.250 0.250 1.000

Then, by Xi°R, we can infer the output Xz as follows:

X2= [ 0.625 0.375 0.25 0.25 ] when X:=1
Xe= [ 0.375 0.375 0.75 0.25 ] vhen X:=2
Xa= [ 0.50 0.50 0.50 0.25 ] when X;=3
Ke= [ 0.75 0.50 0.750.25 ) when X1=4
Xe= [ 0.00 0.25 0.25 1.00 ] when X:=5

Finally, by using center of gravity method, we can get the following results:

if X:=1 then X2=2.44 -
if X1=2 then X2=3.0
if X:=3 then X2=2.7T1
if X71=4 then X2=2.63
if X1=5 then X2=4.33

3). Here we use our approach proposed above. At first we divide the domains of X

and X2 into 3 subdomains: [1,2],(2,3],(3,4). By projecting the data in Table 1
into the subdomains, we can get the results in Table 3. '

Table 3
subdomain of X: subdomain of X2 mean of X; mean of X2 frequency
(1,2 (1, 2] 1.5 1.5 ' 2/3
(1,2] (3. 4] 2 4 1/3
(2, 3] {1,2] 3 1 1
(3, 4] (1, 2] 4 1 1/4
(3, 4] (2, 3] 4 3 1/4
(3.4 (3, 4] 4.5 4

5 17

Using (2) where the factor;.frequéncy, is considered, the‘Riis,dériiédfas‘follows:

0.625-0. 375 0.250 0. 250
0.500 0.375 0.333 0.250
0.250 0.250 0.375 0.375 |.
0.250 0.250 0.375 0.500

Then, by X1®R, we can infer the output Xz as -follows:

Xe= [ 0.625 0.375 0:250 0.250 ] when X;=1
X2= [ 0.500 0.375 0.333 0.250 ] when X;=2
X2="[ 0.500 0.375 0.3750.325 1 when X:53
Xe= [ 0.500 0.250 0.375 0.375 ] when Xi=4
X2= [0.250 0.250 0.375 0.500 ] when X;=5 -

Finally, by using center of gravity -ethod,v'e;éggiget thé:?ollbhingffeéyfts;i .
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if X1=1 then X2=2.44
if X1=2 then X2=2.64
if X:=3 then X2=2.85
if X:=4 then X2=2.90
if X1=5 then X2=8.42

Analysing the results of above three approaches, it can been found that X2=2.85
and X2=2.90 derived by our approach are larger than the values of X2 derived by
the first and second approaches when X:=2 and X:=3. It means that the influence of
data pairs (3,1} and {4,1}, the possible noise, is decreased.

Example 2: A collection of input-output data generated by X2 (k)= 2*(Xz(k)+r(k))
vhere r(k) is non-measureable noise shown in Table 4.

Table 4
k input X:(k) output X2 (k) , "a
1 0.5 1.0
2 1.0 2.0
3 1.% 3.0
4 2.8 3.4
5 3.0 6.0
6 3.5 7.0
7 4.5 9.0
8 §.0 10.0
9 5.9 12.6
10 6.5 13.0
11 7.0 14.0
12 7.5 15.90
13 8.5 15.8
14 9.0 18.0
15 9.5% 19.0

As in the first example, we use the above aproaches to determine R as follovs.

1). At first we,deternine 6 reference seéts ri; of Xs and X2 (i=1,2;j=1,...,6) as
in Fig. 3 in which the 6 reference sets of X: cover the range of 0-10 and the §

reference sets of X2 cover the range of 0- 20, then we can generate R “as follows
_according to (4). '

£ 0.75 0.50 © 0 o o )
0.50 0.75 0.50 0 0 0
0.15 0.50 0.75 0.50 0.15 0

0 0  0.50 0.75 0.50 0

o o0 0 0.50 -0.75 0.50
Lo 0 0o 005 0.5 0.75)

By X1®R and center of gravity method, we can then infer the output X2 as follows:.
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Table §

X: 0.5 1.0 1.375 1.5 2.5 3.0 3.25 3.5 3.6654.5 4.755.0 5.5

X2 2.67 4.00 4.00 4.00 5.77 6.70 2.18 7.63 7.93 8.37 8.84 9.30 10.23

X: 6.5 7.0 7.5 8.5 9.0 9.25 9.5

X2 13.0 14.0 15.0 16.0 16.0 16.67 17.33

The error, & k=1.2...., 20 |2%¥X:(k)-X2 (k)| is equal to 21.07.

2). At first using Leszezynski et al's fuzzy clustering method (1985) for above 15
pairs of data in Table 4, we <can get the following 6 clusters:
(1,2,3,4), (5,6, 7), (8), (9), (10,11, 12), (13,14, 15). According to Hirota et-.al's

method (1983), we can then calculate the mean values of each cluster as in Table
6.

Table 6

k input X output X2
1 1. 375 2.35

2 3.665 7.33

3 5.0 10.0

4 5.5 12.6

5 7.0 14.0

6 9.0 17.6

Using (4) for data in Table 6, R can be derived as follows:

(0.3125 0.3125 0.0000 0.000 0.0000 0.0000 )
0.4125 0.5875 0.1675 0.000 0.0000 0.0000
0.0000 0.1675 0.8325 0. 500 031500,0.0&00
0.0000 0.0000 0.5000.0.750 0.5000 0.0000
0.0000 0.0000 0.0000 0.500 0.5000 0.4000
[ 0.0000 0.0000 0.0000 0.000 0.5000 0.4000

/

Then, by X:®R and center of gravity method,  ve can infer the output Xz as follows:

Table 17

X1 0.5 1.0 1.875 1.5 2.5 3.0 3.25 3.5 3.665 4.5 4.75 5.0 5.5

X2 3.273.093.16 3.16 5.91,6.§8 3.00 8.11 8.66 10.0 10.6. 11.2 11.3

X1 6.5 1.0 1.5 85 9.0 9.25 9.5

X2 13.0 13.68 14.55 185.71 15.171 16508/16.52

The error, T k=1.2....,20 [2¢X2 (k)-X2 (k)| is equal. to 24.8.
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3). Here we use our approach proposed above. At first we divide the domains of X:
and X2 into 5 subdomains: [0,2], (2,4],(4,6],(6,8] and (8,10] for X: and
{0,4]. (4,87, (8,121, (12,16 and (16,20] for X2. By projecting the data in Table 6
into the subdomains, we can get the results in Table 8. '

Table 8
subdomain of X: subdomain of X2 nmean of X: mean of X2 frequency
{0, 2] [o, 4] 1 2 1
(2, 4] [0, 4] 2.5 3.4 1/3
(2, 4] (4, 8] 3.25 6.5 2/3
(4, 6] (8,12] 4.1% 9.5 2/3
(4, 6] (12, 16] 5.5 12.6 . 1/3
(6, 8] (12, 18] 1.0 14.0 1
(8, 10] (12, 16] 8.5 15.8 1/3
(8, 10] (16, 20} 9.25 18.5 2/3 -

Using (2) where the factor, frequency, is considered, the R is derived as follows:

' -

. 500 0.500 0.000 0.000 0.000 0.000
.500 0.500 0.375 0.000 0.000 0.000
. 130 0.375 0.625 0.375 0.150 0.000
.000 0.000 0.375 0.5000.500 0.000
.000 0.000 0.000 0.500 0.500 0.375
.000 0.000 0.000 0.050 0.375 0.625

[ I = I — B R B =]

{
Then, by X:1®R and center of gravity method, we can infer the output Xz as follows:

Table 9

X: 0.5 1.0 1.375 1.5 2.5 3.0 3.25 3.5 3.665 4.5 4.75 5.0 5.5

X» 3.2 3.64°3.64 3.64 5.86 6.37 7.05 7.55 7.92 8.45 8.95 9.63 10.14

X: 6.5 7.0 7.5 85 9.0 9.25 9.5

X2 13.54 14 14.46 15.64 16.0 16.73 17.2

The error, :k=1.a...'.,2e- 12%X: (k)-X2(k)| is equal to 19.83.

Or we can also use the formula (3) vwhere the threshold. is 1/3, the R is as~
follows:

( 0.500 0.500 0.000 0. 000 O;OOO‘O;OOOW
0.500 0.500 0.375 0.000 0.000 0.000
0.000 0.379 0.625 0.37% 0.000 0.000
0.000 0.600 0.375 0.500 0.500 0.000
0.000 0.000 0.000 0.500 0.500 0.375

0. 000 0.000 0..000 0.000 0.375 0.625 )

Then, by X1°R'and center of~gravity‘iethodf‘je»¢an infer‘the;putput'XE-és follows:.
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Table 10

X: 0.5 1.0 1.375 1.5 2.5 3.0 3.258.5 3.665 4.5 4.75 5.0 5.5

X2 3.2 3.64 3.64 3.64 4.925.606.296.77 7.13 9.23 9.71 10.4 11.08

Xy 6.5 7.0 7.5 85§ 9.0 9.25 9.5

X2 13.54 14 14.46 15.64 16.0 16.73 17.2

The error, x=1,2,...,20 |2%¥X7(k)-X2(k)| is equal to 16. 68.

By comparison of the computational errors as above, the X2 derived by our approach
has the minimal errors, 19.83 and 16.68.

-

4. CONCLUDING REMARKS

So far identification methods can be divided into two types. One is that the
fuzzy relation R of a fuzzy model is derived by a recursive formula as (4).
Another is to determine of the fuzzy relation R by solving fuzzy relational
equations (Pedrycz, 1983). Both of them fail to eliminate noise contaminating data
used for system identification, so that the fuzzy models identified by them are
not identical to their real models. Filter methods can be used to remove some

noise from data, the same idea can also be used in (4) (Xu and Lu 1987), i.e.,
replace (4) with

R(k)=a*R(k-1)U(1-a) (X1 (k) X2 (k) X. . . XXn (k) xKn+1 (X)), k=1,2,..1

but they are all based on time series analysis compared with our satistical
approach. The clustering method ( Hirota and Pedrycz (1983)), as used in above
examples, can be used in determination of R in (4) when there are unknown
disturbances imposing (4) not to hold. The difference between our approach and
the clustering method is that our approach tries to eliminate noise but the
clustering method tries to determine the R that can best match with the input-
output data including noise; moreover, the clustering method can only be used to
analyse the limited number of data since the memory space needed by the clustering
program is the direct ratio of the number of data mutiplied by the number of
clusters., and the result of clustering is dependent on the number of clusters
chosen by users (Leszczynski 1985). Czogala and Pedrycz (1983) proposed the
concept of fuzzy probabilistic controllers, but they did not deal with how to
build the probabilistic controller by making the use of statistics.

This paper aims at the study of an approach to identification of fuzzy systems in

noise environment. The application of the proposed approach in above numerical

examples and the comparison of our approach with othe: methods prove its
usefulness.
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membership functions of reference sets

Fig. 3 Reference sets of example 2




