ROUGH SETS VIA FUZZY SETS.

(Nicola Umberto ANIMOBONO - C.P. 2099 - IOO100 ROMA AD / Italy)

Correspondances one to one between families of rough and fuzzy sets are here showed (\simeq value 1 to 1).

Keywords: cantorean and zadehean fuzzy sets, zadehean; (abstract and concret) rough sets, pawlakean; fuzzy supports and cores.

Notations, recalls and references in [1].

1. Introduction.

When we try a definition of rough operators, we don't meet a natural formulation, because the (crisp) set-theoretic operations between sure parts and possible parts do not give in general case (to see: sect. B.2 in [1])

 $\underline{A}U\underline{B} = \underline{A}U\underline{B}$ and $\overline{A}\cap \overline{B} = \overline{A}\cap \overline{B}$, but

AUBSAUBSAUBSAUB = AUB and

ANB = ANBSANBSANBS ANB.

The approximable support plays a basic role when we want to define the rough operators.

Now we are going to examine the main proprieties for a good definition.

Let Ω be an universe of discourse, π a partition of Ω , $P = (\underline{P}, \overline{P})$ (with $\underline{P} \subseteq \overline{P}$, $\underline{P}, \overline{P} \subseteq \overline{\Pi}$) a (Pawlak's abstract) rough set and $\mathcal{F} = \mathcal{F}_{\overline{\Pi}}(\Omega)$ (abstract) pawlakean of Ω sub Π (totality of rough sets).

If
$$\tilde{A}, \tilde{B} \in \tilde{C}$$
 let be:
$$\tilde{U}_{\tilde{A}, \tilde{B}} = \left\{ \tilde{P} = (\underline{P}, \overline{P}) \in \tilde{C} \mid \underline{P} \supseteq \underline{A} \cup \underline{B}, \ \overline{P} = \overline{A} \cup \overline{B} \right\},$$

$$\tilde{U} = \left\{ \tilde{U}_{\tilde{A}, \tilde{B}} \right\} (\tilde{A}, \tilde{B}) \in \tilde{C} \times \tilde{C} ;$$

$$\tilde{V}_{\tilde{A}, \tilde{B}} = \left\{ \tilde{P} = (\underline{P}, \overline{P}) \in \tilde{C} \mid \underline{P} = \underline{A} \cap \underline{B}, \ \overline{P} \subseteq \overline{A} \cap \overline{B} \right\},$$

$$\tilde{V} = \left\{ \tilde{V}_{\tilde{A}, \tilde{B}} \right\} (\tilde{A}, \tilde{B}) \in \tilde{C} \times \tilde{C} ;$$

$$\tilde{C}_{\tilde{A}} = \left\{ \tilde{P} = (\underline{P}, \overline{P}) \in \tilde{C} \mid \underline{P} = \Omega - \overline{A}, \ \overline{P} = \Omega - \underline{A} \right\} \left[= (\Omega - \overline{A}, \Omega - \underline{A}) \right],$$

$$\tilde{C} = \left\{ \tilde{C}_{\tilde{A}} \right\}_{\tilde{A} \in \tilde{C}} \subseteq \tilde{C} \right\}$$
If $\tilde{U}, \tilde{C}, \tilde{C}$ are the rough abstract union, r.a. intersection, r.a. complementation, resp., for a good definition must be:
$$\tilde{A}\tilde{U} \tilde{B} \in \tilde{U}_{\tilde{A}, \tilde{B}}, \tilde{A}\tilde{C}\tilde{B} \in \tilde{V}_{\tilde{A}, \tilde{B}}, \tilde{C}\tilde{A} \in \tilde{C}_{\tilde{A}} \text{ and (DeMorgan's Laws)}$$

$$\tilde{C} (\tilde{A}\tilde{U}\tilde{B}) = \tilde{C}\tilde{A}\tilde{C}\tilde{B}, \tilde{C}\tilde{B}, \tilde{C}\tilde{A}\tilde{C}\tilde{B} = \tilde{C}\tilde{A}\tilde{C}\tilde{B}.$$

2. Fuzzy supports and cores.

Let be: $\tilde{B} = \tilde{Z}_{\Lambda}^{0}$ the Λ -fuzzy boolean of Ω (to see: sect.A.1 in [1]) (totality of cantorian fuzzy sets of Π sub Λ).

Defination.

$$S_{\tilde{A}} = \tilde{B} \in \tilde{B}$$
 fussy centertan support of \tilde{A} , $\tilde{B} \geq \tilde{A}$

$$K_{\widetilde{A}} = \widetilde{B} \in \widetilde{A}$$
 fuzzy cantorian core (or kernel) of \widetilde{A} .

Proposition.

$$\widetilde{B} \in \widetilde{\mathcal{B}} \Rightarrow K_{\widetilde{B}} = S_{\widetilde{B}} = \widetilde{B} ; \quad \widetilde{A} \notin \widetilde{\mathcal{B}} \Rightarrow K_{\widetilde{A}} \subset \widetilde{A} \subset S_{\widetilde{A}} ; \quad K_{\widetilde{A}} \subseteq S_{\widetilde{A}} .$$

In (erisp totality of fuzzy sets) $\widetilde{Z} = \widetilde{\widetilde{Z}}(a)$ we crisply define the next relation 7:

$$\tilde{E} \int \tilde{F} (\tilde{E}, \tilde{F} \in \tilde{Z}) \iff S_{\tilde{E}} = S_{\tilde{F}} \text{ and } K_{\tilde{E}} = K_{\tilde{F}}.$$

Trivially, \int is an equivalence relation and its possible to (crisply) define the quotient set $q = \widetilde{\mathcal{K}} \not\vdash_{\mathcal{K}}$: its elements represents families of fuzzy sets with same fuzzy support and core. It results $q \sim \widetilde{\mathcal{L}}_{\{0,\frac{1}{2},\frac{1}{2}\}}(\mathfrak{I}_{\mathbb{L}})$, where $\{0,\frac{1}{2},\frac{1}{2}\}$ is a lattice with 3 elements $\{0,\frac{1}{2},\frac{1}{2}\}$ is a lattice with 3 elements $\{0,\frac{1}{2},\frac{1}{2}\}$ is (under choice axiom) an application (by writing: $\mathcal{L}([\widetilde{F}]) = \mathbb{I}_{[\widetilde{F}]}$), we considere the (crisp) subfamily $\{\widetilde{F}_{g}\}$ $\widetilde{F} \in \widetilde{\mathcal{K}}$ such that:

$$\begin{split} \widetilde{F}_{\mathfrak{F}}(\mathbf{x}) &= \left\{ \begin{array}{l} 1 & \text{if } K_{\mathfrak{F}}(\mathbf{x}) = 1 \\ 0 & \text{if } S_{\mathfrak{F}}^{\mathfrak{F}}(\mathbf{x}) = 0 \\ \vdots \\ \widetilde{F}_{\mathfrak{F}} & \text{if } K_{\mathfrak{F}}^{\mathfrak{F}}(\mathbf{x}) \neq S_{\mathfrak{F}}^{\mathfrak{F}}(\mathbf{x}) \end{array} \right. \\ \text{Then ,by } \left[\widetilde{F}_{\mathfrak{F}} \right]_{\mathfrak{F}} &= \left[\widetilde{F} \right]_{\mathfrak{F}} & \text{, also it results } \mathbf{q} \overset{\sim}{\sim} \left\{ \widetilde{F}_{\mathfrak{F}} \right\} & \widetilde{F}_{\mathfrak{F}} \overset{\sim}{\mathfrak{F}} \end{split}$$

Remark.

The crisp set theory is the metatheory of the fuzzy set (object) theory: the quotient set \tilde{Z} /g is embedded into the metatheoretical environment.

3. Fuzzylike rough operators.

membership grade of x to respect P.

Let \mathcal{E} be (indiscernibility) equivalence relation in \mathcal{N} and π the \mathcal{E} -associated partition (with ω its elements).

Definition.

Let be: $\mathbf{r} \colon \widetilde{\mathcal{P}} \to \Lambda^{\Pi}$ (by writing $\mathbf{r}(\widetilde{\mathbf{P}}) = \mathbf{r}_{\widetilde{\mathbf{P}}}$) s.t. $= 1 \qquad \omega \in \underline{\mathbf{P}} \qquad \text{i/nternal condition}$ $\mathbf{r}_{\widetilde{\mathbf{P}}}(\omega) \begin{cases} = 1 & \omega \in \underline{\mathbf{P}} \qquad \text{i/nternal condition} \\ \in]0,1[& \text{iff} \quad \omega \in \widecheck{\mathbf{P}} \qquad \text{b/oundary (or indisc.)cond.} \\ = 0 & \omega \notin \overline{\mathbf{P}} \qquad \text{e/xternal condition} \end{cases}$ For any $\mathbf{x} \in \mathbb{N}$, the value $\mathbf{r}_{\widetilde{\mathbf{P}}}([\mathbf{x}])$ is called the <u>rough</u>

By • it's: $\omega \in \overline{P} \iff \mathbf{r}_{\widehat{P}}(\omega) \neq 0$; hence we can to say: $\widetilde{P} = (\underline{P}, \overline{P}) = (\{\omega \in \mathbf{r} \mid \mathbf{r}_{\widehat{P}}(\omega) = 1\}, \{\omega \in \overline{\Pi} \mid \mathbf{r}_{\widehat{P}}(\omega) \neq 0\})$.

The simbols \(\, \, \, \, \) let be, resp., the rough complementation operator, r. union op. and r.intersection op.; the simbols \(\times \) and \(\times \) are, resp., a t-norm and its dual t-conorm.

Definition.

By
$$\ddot{A}$$
, $\ddot{B} \in \ddot{\mathcal{O}}$, let be:

Straightforwardly it follow, the

Proposition.

$$\begin{array}{lll} \overrightarrow{A} &=& \left(\left\{\omega\in\pi\right| \ 1 - \mathbf{z}_{\widetilde{\mathbf{A}}}^{\omega}(\omega) = 1\right\}, \left\{\omega\in\pi\left|1 - \mathbf{z}_{\widetilde{\mathbf{A}}}^{\omega}(\omega) \neq 0\right\}\right), \\ \overrightarrow{A} \cup \overset{\circ}{\mathbf{B}} &=& \left(\left\{\omega\in\pi\right| \mathbf{z}_{\widetilde{\mathbf{A}}}^{\omega}(\omega)\otimes\mathbf{z}_{\widetilde{\mathbf{B}}}^{\omega}(\omega) = 1\right\}, \left\{\omega\in\pi\right| \mathbf{z}_{\widetilde{\mathbf{A}}}^{\omega}(\omega)\otimes\mathbf{z}_{\widetilde{\mathbf{B}}}^{\omega}(\omega) \neq 0\right\}\right), \\ \overrightarrow{A} \cap \overset{\circ}{\mathbf{B}} &=& \left(\left\{\omega\in\pi\right| \mathbf{z}_{\widetilde{\mathbf{A}}}^{\omega}(\omega) \not\times\mathbf{z}_{\widetilde{\mathbf{B}}}^{\omega}(\omega) = 1\right\}, \left\{\omega\in\pi\right| \mathbf{z}_{\widetilde{\mathbf{A}}}^{\omega}(\omega) \not\times\mathbf{z}_{\widetilde{\mathbf{B}}}^{\omega}(\omega) \neq 0\right\}\right). \end{array}$$

By algebricaly computing, it results:

Proposition.

1.
$$\underline{C} = \mathcal{N} - \overline{A}$$
, $\overline{C} = \mathcal{N} - \underline{A}$, $\underline{C} \subseteq \overline{C}$, $C = \overline{A}$

2.
$$\underline{D} \supseteq \underline{A} \cup \underline{B}$$
, $\overline{D} = \overline{A} \cup \overline{B}$, $\underline{D} \subseteq \overline{D}$

3.
$$E = A \cap B$$
, $E \subseteq A \cap B$ $E \subseteq E$

Proof.

1.
$$C = \{\omega \in \pi \mid 1 - r_{\alpha}(\omega) = 1\} = \{\omega \in \pi \mid r_{\alpha}(\omega) = 0\} = \{\omega \in \pi \mid \omega \notin \bar{A}\} = \mathcal{N} - \bar{A}$$

$$\bar{C} = \{\omega \in \pi \mid 1 - r_{\alpha}(\omega) \neq 0\} = \{\omega \in \pi \mid r_{\alpha}(\omega) \neq 1\} = \{\omega \in \pi \mid \omega \notin \bar{A}\} = \mathcal{N} - \bar{A}$$

$$\bar{A} \subseteq \bar{A} \implies \mathcal{N} - \bar{A} \supseteq \mathcal{N} - \bar{A}$$

$$\bar{C} - C = (\mathcal{N} - \bar{A}) - (\mathcal{N} - \bar{A}) = \bar{A} - \bar{A}$$

- 2. $\omega \in \underline{A} \cup \underline{B} \Rightarrow \omega \in \underline{A} \text{ or } \omega \in \underline{B} \Rightarrow \underline{r}(\omega) = 1 \text{ or } \underline{r}(\omega) = 1 \Rightarrow \underline{r}(\omega) \otimes \underline{r}(\omega) = 1 \Rightarrow \omega \in \underline{D}$ $\omega \notin \overline{A} \cup \overline{B} \Rightarrow \omega \in \Omega (\overline{A} \cup \overline{B}) = (\Omega \overline{A}) \wedge (\Omega \overline{B}) \Rightarrow \underline{r}(\omega) = \underline{r}(\omega) = 0 \Rightarrow \omega \notin \overline{D}$ $\omega \notin \overline{D} \Rightarrow 0 = \underline{r}(\omega) \otimes \underline{r}(\omega) \wedge \underline{r}(\omega) \vee \underline{r}(\omega) = \underline{r}(\omega) = 0 \Rightarrow \omega \notin \overline{A}, \omega \notin \overline{B}$ $\omega \in \underline{D} \Rightarrow \underline{r}(\omega) = 1 \Rightarrow \underline{r}(\omega) \neq 0 \Rightarrow \omega \in \overline{D}$ $\omega \in \underline{D} \Rightarrow \underline{r}(\omega) = 1 \Rightarrow \underline{r}(\omega) \neq 0 \Rightarrow \omega \in \overline{D}$
- 3. $\omega \in \underline{A} \wedge \underline{B} \Rightarrow \Gamma(\omega) = \Gamma_{\underline{B}}(\omega) = 1 \Rightarrow \omega \in \underline{E}$ $\omega \in \underline{E} \Rightarrow 1 = \Gamma_{\underline{A}}(\omega) + \Gamma_{\underline{B}}(\omega) \leq \Gamma_{\underline{A}}(\omega) \wedge \Gamma_{\underline{B}}(\omega) \Rightarrow \Gamma_{\underline{A}}(\omega) \Rightarrow \omega \in \underline{A} \wedge \underline{B}$ $\omega \in \underline{E} \Rightarrow 0 + \Gamma_{\underline{A}}(\omega) + \Gamma_{\underline{B}}(\omega) \leq \Gamma_{\underline{A}}(\omega) \wedge \Gamma_{\underline{B}}(\omega) \Rightarrow \Gamma_{\underline{A}}(\omega) + 0 + \Gamma_{\underline{B}}(\omega) \Rightarrow \omega \in \underline{A} \wedge \underline{B}$ $\omega \in \underline{E} \Rightarrow \Gamma_{\underline{B}}(\omega) = 1 \Rightarrow \Gamma_{\underline{A}}(\omega) + 0 \Rightarrow \omega \in \underline{E}$ 4. $\neg (\underline{A} \cup \underline{B}) = (\{\omega \in \overline{B} | 1 \Gamma_{\underline{A}}(\omega) = 1\}, \{\omega \in \overline{B} | 1 \Gamma_{\underline{A}}(\omega) \neq 0\}) =$ $= (\{\omega \in \overline{B} | \Gamma_{\underline{A}}(\omega) = 0\}, \{\omega \in \overline{B} | \Gamma_{\underline{A}}(\omega) \neq 1\}) =$ $= (\{\omega \in \overline{B} | \Gamma_{\underline{A}}(\omega) = 0\}, \{\omega \in \overline{B} | \Gamma_{\underline{A}}(\omega) \neq 1\}) =$ $= (\{\omega \in \overline{B} | \Gamma_{\underline{A}}(\omega) = 0\}, \{\omega \in \overline{B} | \Gamma_{\underline{A}}(\omega) = 0$
 - $= (\{\omega \in \Pi \mid \Pi_{A}(\omega) \otimes \Pi_{B}(\omega) = 0\}) \{\omega \in \Pi_{A}(\Pi_{A}(\omega)) + (\Pi_{A}(\omega)) + (\Pi_{A}($
 - 5. Dually to 4.

4. Conclusions.

Let $\widetilde{\pi} = \widetilde{Z}_{\Lambda}(\pi)$ be the zadehean of π . If $\widetilde{P} = (\underline{P}, \overline{P}) \in \widehat{\mathcal{O}}$, we considere the fuzzy sets $\widetilde{P}, \underline{\widetilde{P}} \in \widetilde{\pi}$ which membership function are $\mu_{\widetilde{P}} = \mathbf{T}_{\widetilde{P}}$ and $\mu_{\widetilde{P}} = \mathbf{T}_{\widetilde{P}}|_{\underline{P}}$. Then \forall $\widetilde{P} \in \widehat{\mathcal{O}}$ let be: $\widetilde{Z}_{\widetilde{P}} = \widetilde{Z}_{\widetilde{P}} = \widetilde{Z}_{\widetilde{P}}$. The family $\{\widetilde{Z}_{\widetilde{P}}\}_{\widetilde{P} \in \widehat{\mathcal{O}}}$ is a crisp partition of $\widetilde{\pi}$ and $\widetilde{Z}_{\widetilde{P}} = \widetilde{Z}_{\widetilde{P}}$ (of sect.2) is the associated equivalence relation. By $\widetilde{Z}_{\widetilde{P}} = \widetilde{Z}_{\widetilde{P}}$ and by $\widetilde{Z}_{\widetilde{P}} = \widetilde{Z}_{\widetilde{P}}$ and by $\widetilde{Z}_{\widetilde{P}} = \widetilde{Z}_{\widetilde{P}} = \widetilde{Z}_{\widetilde{P}}$.

^[1] N.U.Animobono - Finite rough sets as probabilistic-like fuzzy sets - BUSEFAL 34 (1988), 71-80