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1. INTRODUCTION

Fuzzy functions have been defined in several ways and some of them are
incorporated in the book FUZZY SETS AND SYSTEMS : THEORY AND
APPLICATIONS by Dubois and Pradei2l].

So far as it is known that the idea of belongingness of a fuzzy

point to a fuzzy set and guasi-coincidence of a fuzzy point with a fuzzy
set has not been explicitly wused in the existing definitions of fuzzy
functions.

Let X and Y be two non-empty sets and f:X

>Y be a mapping. Let A and
B be two subsets of X and Y respectively. f is called a mapping from A
to B if x e A implies f(x) € B .

If A\, u are two fuzzy subsets of X and Y respectively, then f is said
tp have a fuzzy domain X and a fuezy range 4 if and only if

CP): for all x e X, u(fCxd) = Alxd. '

The condition ¢(P) is equivalent to the following condition
(P'>): for all xeX and t € €0,1], x, € A implies f(x2), € 1

The replacement of two “e"® in the condition (P’) by any two of {s, q,
evq (belongs to or is guasi-coincidence with), eaq (belongs to and is

guasi-coincidence withd} generates the concept of new types of. fuzzy
mappings, called (o, D -fuzzy mappings from X to y where o or 3 stands
for any one of {g, g,ewvq, €~q} and a ¥ €~q. ’

Fuazy injectivity and surjeccivity of an Co, D =fuzzy magping are
defined. The rest of the paper has been devoted to find the necessary
and sufficient conditions for f to be an (a, ) ~fuzzy mapping from A top
and to study the relation between ordinary injectivity (surjectivzty) of

the ordinary function f and the fuzzy injectivity Cor surjectivity? of
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an Ca, D =fuzzy mapping from A to p. .

Unless otherwise mentioned X, Y will denote two non-empty sets; f a

mapping of X into ¥Y; A\, up fuzzy subsets of X and Y respectively with
ACx) > O for all x € X. a or 3 will denote any one of {e, q, evq, €~q}.
x, @ A will mean that x, a A does not hold.

DEFINITION 11 £ is said to be an (a,@-fuzzy mapping‘Ca # e~q) from X
to u if

for all x € X and t € €0,1), x, a A implies (fCs), 8 n.

REMARK 12 The case o ¥ e~q is omitted since there exist subdets X s.t
{x x, €nq A} is empty. Ip fact if Ax> £ .5 for all x « X, then
A is such a fuzzy subset.

THEOREM 13 f is (q,q)-fuzzy map from A to g if and only if
for all x € X, H(ECxI) = ACxD.

THEOREM 14 Let f be an Co,@-fuzzy map from X\ to p, where
Ca,d = (5 q, (g ey, (g, (g,e q), (eqg,, (evg,q), (evq, engd.
Then u(£Cx0) = 1 for all x € Xo.

REMARK 19 The converse of the Theorem _‘..p'[} is also true.

THEOREM 16 f is an Ca, evq@d -fuzzy map from A to y, where a = & 4, &q
if and only if €i> A(xD Z .5 implies p(if_(x)) z .58
Ciid ACxD < .5 implies wp(£Cxd) = ACO.

DEFINITION 17 Let f be an (o, D -fuzzy map from XA to .
f is said to be an Ca, D -=fuzzy irnjective map from A to pu if
for all x,y € X, x a yx“”iq:lies. (f(x))k(“x” G @y

A Heteyrn’

THEOREM 18 Let f be an (o, @ -fuzzy map from A to p where a = &, €vq.
If f be injective then f 1is an (o, - fuzzy injective.

THEOREM 19 Let f be injective and let f be a (g, M =fuzzy injective map
from A to p. » ) v

Ci) If # = g then f is a (q,M-fuzzy injective map from A to u if and
only if for all x e X, A(x) ¥ .38 t-plieé p{1Cxd) X .9,

Cii) ‘If f = € eq, €~q, then f is a (q,f)-fuzzy injective map from A to-
g if and only if for all  x e X, ACxd > .5. '
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REMARK 110 If 8 = € , e€~q, then since u(f(x>) = 1 for all x € X
thé condition (1) reduces to A(x> > .5 for all x € X.

THEOREM 111 Let f be an (o, -fuzzy injective map from A to u where
Ca,® ¢ Cq,q>. Then f is injective.

REMARK 112 Theorem }§] is not true if Ca, N = Cqg,P.

REMARK 113 The (q, @ ~fuzzy injectivity of f implies the injectivity of
b4 if u(fCx>) > .5 for all x € X. '

DEFINITION 144 An Ca, @ =-fuzzy map £ from A to u is said to be an
Ca, D —-fuzzy surjective map if for all y e ¥, t e co,'u such that
y, 8 #, then there exists x ¢ £ -’ty) such that x, a A.

REMARK. 115 It follows from the Definition |.{4 that Ca, D -fuzzy
surjectivity of f implies the surjectivity of f. But the converse is not

true.

We denote for all y € ¥, S, = sup{(33; x e £ (y>}.

THEOREM 116 Let f be an (o, D -fuzzy sur jective map from A to u.

1) If Co = (e &, (g, q), then - '
for all y e Y, HCyd = S,

Ciid If Ca, D = Cevg, =, Cavq,qd, (&g, erq), then
for all yeY, SYZ.S,

Ciii) If Co,® = (s, @, (e, v, (g egd, (q,e, (g,evq), (g,erq>, then
for all y e Y, S, =1, . '

Civ) If Ca, @ = Cevg, evgd, then

for all y e ¥, s, < .5 implies (Ky>) = S,.

THEOREM 117 Let f be a surjective map of X onto Y. Let f be an
Ca, D ~fuzzy map from X ta 4 where X satisfies the “sup property".
Then £ is an Coa, D -fuzzy surjective map if

Ci) for all yeY and Co,® = (g, &, (q,9, uCyd =5,

- €ii> for all y € ¥ and (o, = (evq, e, (evqg, q), Ceaq,ézsq), Sy =Z..5
€4ii) for all y €Y and Ca,ﬁ) = (g, q), (g,eq), (s,enq, (q,=),

(g, oq?, (e, S, =1 | ‘ .

Civ> for all y € ¥ and Ca,® = Cevg, &), S, < .5 implies Cy) = S,.
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DEFINITION 118 An (o, B)-fuzzy'mab from X to y is said to be Ca, D =fuz=y
bijective if it is both (o, M -fuzzy injective and (o, D -fuzzy

sur jective.

THEOREM 119 Let A e I~

C1> f is an (o, 0 =fuzzy map from A to £CAD.

Ciid> f is injective, i'q.'..ﬂ;g,f is also an (o, 0 -fuzzy injective map from A
to £CX). )

Ciiid If A satisfies the “sup property”, then f is an Ca, o) ~fuzzy
sur jective map from A to £C)M).

THEOREM 120 Let u e IY. Then f is an (o, O~fuzzy map from f-’Cp) to u.
If £ is injective (or si.n*jective), then f is also an (a,c0-fuzzy

injective (or surjectived map from A\ to u.

REMARK 121 The identity map of X is an Co, O -fuzzy bij‘ective map from X
to A.

THEOREM 122 Let X, ¥, Z be three sets and A € IX, u e 1Y, » e 12 Let
£:1X—>Y, g:¥ '
Ch3, ¥>~fuzzy map from u to v, then gof is an Co, ¥O>=~fuzzy map from A to ».
If £f and g are (o,{ and (B, y¥-fuzzy injective Cor surjective or
bi jective), then gof is also an Co, ¥)-fuzzy injective Cor surjective or
bi,jectivg).

>Z2. If £ is an Co, D -fuzzy map from A to # and g, a

REMARK 123 Let f be bi jective. _

If £ is an Co, D ~fuzzy map from A to i, where o = $ and # = e~q, then
£7* 1s not tiecessar.lly a (fBco=-fuzzy map from pg to .

THEOREM 124 Let f be bijective and £ an Coty D ~fuzzy map from A to u.
If £ is Cop D -fuzzy surjective from A to H, then £ is a C3y O =-fuzzy
map from py to A.

THEOREM 125 Let X and Y be two groups and f£:X- >Y a homomorphism.

Lat A, ¢ be (a,)~fuzzy subgroups of X and Y respectively.
If £ is an (o, -~fuzzy map from X to u, then f-tt'.p) is an (o, ~-fuzzy
subgroup of X. ' '



26

REFERENCES

i. Bhakat, S.K. & Das, P. : On the definition of a fuzzy subgroup :
To be published in Fuzzy Sets And Systems.

2. Dubois, D. & Prade, H. : Fuzzy Sets And Systems : Theory And
Applications : Academic Press (1980).

3. Ming, Pu Pao. & Ming, Liu Ying : Fuzzy Topology I : Neighbourhood
structure of o jfuzzy point and Moore-Smith convergence :

J. Math. Anal. Appl. 76, (1980>, 571-599.
4. Negoita, C.VY. & Ralescu, D.A : dpplication of Fuzzy sets to system
analysis : ISR. II. Birkhaeuser, Basel (1975) 18-24.

-

5. Rosenfled, A : Fuzzy Groups : J. Math. Anal. Appl. 35,C1971) S512-517.
6 . 2adeh, L.A : Fuzzy Sets : Inform and control 8, (1965) 338-353.




