(a, B)-FUZZY MAPPINGS

S.K. BHAKAT SIKSHA-SATRA VISVA-BHARATI UNIVERSITY

> and P. DAS

DEPARTMENT OF MATHEMATICS
VISVA-BHARATI UNIVERSITY
SANTINIKETAN, WEST BENGAL
INDIA

1. INTRODUCTION

Fuzzy functions have been defined in several ways and some of them are incorporated in the book FUZZY SETS AND SYSTEMS: THEORY AND APPLICATIONS by Dubois and Prade[2].

So far as it is known that the idea of belongingness of a fuzzy point to a fuzzy set and quasi-coincidence of a fuzzy point with a fuzzy set has not been explicitly used in the existing definitions of fuzzy functions.

Let X and Y be two non-empty sets and $f:X\longrightarrow Y$ be a mapping. Let A and B be two subsets of X and Y respectively. f is called a mapping from A to B if $x \in A$ implies $f(x) \in B$.

If λ , μ are two fuzzy subsets of X and Y respectively, then f is said to have a fuzzy domain λ and a fuzzy range μ if and only if (P): for all $x \in X$, $\mu(f(x)) \ge \lambda(x)$.

The condition (P) is equivalent to the following condition (P'): for all $x \in X$ and $t \in (0,1]$, $x_t \in \lambda$ implies $f(x)_t \in \mu$. The replacement of two " \in " in the condition (P') by any two of $\{\in, q, \in A\}$ (belongs to or is quasi-coincidence with), $\in A$ (belongs to and is quasi-coincidence with) generates the concept of new types of fuzzy mappings, called (α, β) -fuzzy mappings from λ to μ where α or β stands for any one of $\{\in, q, \in A\}$ and $\alpha \neq A$.

Fuzzy injectivity and surjectivity of an (α, β) -fuzzy mapping are defined. The rest of the paper has been devoted to find the necessary and sufficient conditions for f to be an (α, β) -fuzzy mapping from λ to μ and to study the relation between ordinary injectivity (surjectivity) of the ordinary function f and the fuzzy injectivity (or surjectivity) of

an (α, β) -fuzzy mapping from λ to μ .

Unless otherwise mentioned X, Y will denote two non-empty sets; f a mapping of X into Y; λ , μ fuzzy subsets of X and Y respectively with $\lambda(x) > 0$ for all $x \in X$. α or β will denote any one of $\{\in$, q, $\in \mathbb{A}^2$, x, $\overline{\alpha}$ λ will mean that x, α λ does not hold.

DEFINITION 11 f is said to be an (α,β) -fuzzy mapping $(\alpha \neq \epsilon \land q)$ from λ to μ if

for all $x \in X$ and $t \in (0,1)$, $x_t \circ \lambda$ implies $(f(x))_t \beta \mu$.

REMARK 12 The case $\alpha \neq \in A$ is omitted since there exist subsets λ s.t $\{x_t; x_t \in A\}$ is empty. In fact if $\lambda(x) \leq .5$ for all $x \in X$, then λ is such a fuzzy subset.

THEOREM 13 f is (q,q)-fuzzy map from λ to μ if and only if for all $x \in X$, $\mu(f(x)) \geq \lambda(x)$.

THEOREM 14 Let f be an (α, β) -fuzzy map from λ to μ , where $(\alpha, \beta) = (\epsilon, q)$, $(\epsilon, \epsilon \wedge q)$, $(q, \epsilon \wedge q)$, $(\epsilon \wedge q, \epsilon)$, $(\epsilon \wedge q, q)$, $(\epsilon \wedge q, q)$, $(\epsilon \wedge q, q)$. Then $\mu(f(x)) = 1$ for all $x \in X$.

REMARK 15 The converse of the Theorem 1/4 is also true.

THEOREM 16 f is an $(\alpha, \in \mathbb{Q})$ -fuzzy map from λ to μ , where $\alpha = \in$, q, $\in \mathbb{Q}$ if and only if (i) $\lambda(x) \geq .5$ implies $\mu(f(x)) \geq .5$ (ii) $\lambda(x) < .5$ implies $\mu(f(x)) \geq \lambda(x)$.

DEFINITION 17 Let f be an (α, β) -fuzzy map from λ to μ .

f is said to be an (α, β) -fuzzy injective map from λ to μ if for all $x, y \in X$, $x_{\lambda(x)} = \overline{\alpha} y_{\lambda(x)}$ implies $(f(x))_{\lambda(f(x))} = \overline{\beta} (f(y))_{\mu(f(y))}$.

THEOREM 18 Let f be an (α, β) -fuzzy map from λ to μ where $\alpha = \epsilon$, $\epsilon \vee q$.

If f be injective then f is an (α, β) -fuzzy injective.

THEOREM 19 Let f be injective and let f be a (q, β)-fuzzy injective map from λ to μ .

(i) If $\beta = q$, then f is a (q,β) -fuzzy injective map from λ to μ if and only if for all $x \in X$, $\lambda(x) \le .5$ implies $\mu(f(x)) \le .5$,

(ii) If $\beta = \epsilon$, eq, eq, then f is a (q, β) -fuzzy injective map from λ to μ if and only if for all $x \in X$, $\lambda(x) > .5$.

REMARK 110 If $\beta = \epsilon$, $\epsilon \wedge q$, then since $\mu(f(x)) = 1$ for all $x \in X$ the condition (1) reduces to $\lambda(x) > .5$ for all $x \in X$.

THEOREM 111 Let f be an (α, β) -fuzzy injective map from λ to μ where $(\alpha, \beta) \neq (q, q)$. Then f is injective.

REMARK 112 Theorem 1.11 is not true if $(\alpha, \beta) = (q, q)$.

REMARK 113 The (q,q)-fuzzy injectivity of f implies the injectivity of f if $\mu(f(x)) > .5$ for all $x \in X$.

DEFINITION 1.14 An (α, β) -fuzzy map f from λ to μ is said to be an (α, β) -fuzzy surjective map if for all $y \in Y$, $t \in (0,1]$ such that $y_t \beta \mu$, then there exists $x \in f^{-1}(y)$ such that $x_t \alpha \lambda$.

REMARK 115 It follows from the Definition 1.14 that (α, β) -fuzzy surjectivity of f implies the surjectivity of f. But the converse is not true.

We denote for all $y \in Y$, $S_y = \sup\{\lambda(x); x \in f^{-1}(y)\}$.

THEOREM 116 Let f be an (α, β) -fuzzy surjective map from λ to μ . (i) If $(\alpha, \beta) = (\in \in)$, (q, q), then

for all $y \in Y$, $\mu(y) \leq S_y$,

(ii) If $(\alpha, \beta) = (\text{evq}, \text{e})$, (evq, q), (evq, evq), then

for all $y \in Y$, $S_y \ge .5$,

(iii) If $(\alpha, \beta) = (\epsilon, q)$, $(\epsilon, \epsilon \sim q)$, $(\epsilon, \epsilon \sim q)$, $(q, \epsilon \sim q)$, $(q, \epsilon \sim q)$, then for all $y \in Y$, $S_y = 1$,

(iv) If $(\alpha, \beta) = (\exp, \exp)$, then

for all $y \in Y$, $S_v < .5$ implies $\mu(y) = S_v$.

THEOREM 117 Let f be a surjective map of X onto Y. Let f be an (α,β) -fuzzy map from λ to μ where λ satisfies the "sup property". Then f is an (α,β) -fuzzy surjective map if

(i) for all $y \in Y$ and $(\alpha, \beta) = (\epsilon, \epsilon)$, (q, q), $\mu(y) \leq S_y$

(ii) for all $y \in Y$ and $(\alpha, \beta) = (e \lor q, e)$, $(e \lor q, q)$, $(e \lor q, e \lor q)$, $S_y \ge .5$

(iii) for all $y \in Y$ and $(\alpha, \beta) = (\epsilon, q)$, $(\epsilon, \epsilon \lor q)$, $(\epsilon, \epsilon \lor q)$, (q, ϵ) ,

 $(q, e \times q), (q, e \times q), S_y = 1$

(iv) for all $y \in Y$ and $(\alpha, \beta) = (e \lor q, e \lor q)$, $S_y < .5$ implies $\mu(y) = S_y$.

DEFINITION 118 An (α, β) -fuzzy map from λ to μ is said to be (α, β) -fuzzy bijective if it is both (α, β) -fuzzy injective and (α, β) -fuzzy surjective.

THEOREM 119 Let $\lambda \in I^X$.

(i) f is an (α, α) -fuzzy map from λ to $f(\lambda)$.

(ii) f is injective. (The implies f is also an (α, α) -fuzzy injective map from λ to $f(\lambda)$.

(iii) If λ satisfies the "sup property", then f is an (α, α) -fuzzy surjective map from λ to $f(\lambda)$.

THEOREM 120 Let $\mu \in I^Y$. Then f is an (α, α) -fuzzy map from $f^{-1}(\mu)$ to μ . If f is injective (or surjective), then f is also an (α, α) -fuzzy injective (or surjective) map from λ to μ .

REMARK 1.21 The identity map of X is an (α, α) -fuzzy bijective map from λ to λ .

THEOREM 122 Let X, Y, Z be three sets and $\lambda \in I^X$, $\mu \in I^Y$, $\nu \in I^Z$. Let $f: X \longrightarrow Y$, $g: Y \longrightarrow Z$. If f is an (α, β) -fuzzy map from λ to μ and g, a (β, γ) -fuzzy map from μ to ν , then gof is an (α, γ) -fuzzy map from λ to ν . If f and g are (α, β) and (β, γ) -fuzzy injective (or surjective or bijective), then gof is also an (α, γ) -fuzzy injective (or surjective or bijective).

REMARK 123 Let f be bijective.

If f is an (α, β) -fuzzy map from λ to μ , where $\alpha = \beta$ and $\beta = \in Aq$, then f^{-1} is not necessarily a (β, α) -fuzzy map from μ to λ .

THEOREM 124 Let f be bijective and f an (α, β) -fuzzy map from λ to μ . If f is (α, β) -fuzzy surjective from λ to μ , then f^{-1} is a (β, α) -fuzzy map from μ to λ .

THEOREM 1.25 Let X and Y be two groups and $f:X\longrightarrow Y$ a homomorphism. Let λ , μ be (α, β) -fuzzy subgroups of X and Y respectively. If f is an (α, β) -fuzzy map from λ to μ , then $f^{-1}(\mu)$ is an (α, β) -fuzzy subgroup of X.

REFERENCES

- 1. Bhakat, S.K. & Das, P.: On the definition of a fuzzy subgroup: To be published in Fuzzy Sets And Systems.
- 2. Dubois, D. & Prade, H.: Fuzzy Sets And Systems: Theory And Applications: Academic Press (1980).
- 3. Ming, Pu Pao. & Ming, Liu Ying: Fuzzy Topology I: Neighbourhood structure of a fuzzy point and Moore-Smith convergence:
- J. Math. Anal. Appl. 76, (1980), 571-599.
- 4. Negoita, C.V. & Ralescu, D.A: Application of Fuzzy sets to system analysis: ISR. II. Birkhaeuser, Basel (1975) 18-24.
- 5. Rosenfled, A: Fuzzy Groups: J. Math. Anal. Appl. 35, (1971) 512-517.
- 6. Zadeh, L.A: Fuzzy Sets: Inform and control 8, (1965) 338-353.