CHARACTERIZATIONS OF WEAKLY CONTINUOUS ORDER-HOMOMORPHISMS ON FUZZES

CHEN Shuili

Department of Mathematics, Jianghan Petroleum Institute, Jiangling Hubei, 434102, P. R. China

ABSTRACT: The concept of weakly continuous order-homomorphisms on fuzzes was presented in [2]. In this paper, more characterizations with respect to weakly continuous order-homomorphisms are obtained by means of the θ -convergence of molecular nets, ideals on fuzzes.

KEYWORDS: order-homomorphism, fuzz, molecular net, ideal, weak continuity θ -closure

1. INTRODUCTION AND PRELIMINARIES

The notion of order-homomorphisms on fuzzes, which is a proper generalization of the concept of fuzz function [3] and is one of the most important tools of studying fuzzy topology and topology on fuzzes, i.e. so-called topological molecular lattices [4] as well, was first presented by G. J. Wang. Soon afterwards, he established and studied the concepts of continuous, closed and open order-homomorphisms on fuzzes [5]. In 1988, the author introduced and discussed the concepts of weaker forms of continuous order-homomorphisms, such as semi-continuity, almost continuity, weak continuity, S-continuity, O-continuity and so on, which are extensions of the corresponding concepts in [1]. The primary purpose of this paper is to give more characterizations of weakly continuous order-homomorphisms with the aid of the θ -convergence of molecular nets and ideals.

Throughout this paper L, L_1 will be fuzzes, i.e. completely distributive lattices with order-reversing involutions "'".M will be the set consisting of all moleculae [4], i.e. nonzero irreducible elements, of L. 0 and 1 will be denote the least and the greatest elements of L respectively. (L (M), δ) will denote a topological molecular lattice (briefly, TML) with the topology δ . For every $e \in M$, put η (e) = { $P \in \delta$ ': $e \not\in P$ } and call the elements of η (e) R-neighborhoods of e. Moreover, A-, A° and A' will denote the

closure, the interior and the pseudo-complement of $A \in L$ respectively.

DEFINITION 1.1 [5] A mapping $f:L\rightarrow L_1$ is called an order-homomorphism if the following conditions hold:

 $(H_1) f(0) = 0.$

 (H_2) $f(\vee A_i) = \vee f(A_i)$ for $\{A_i\} \subset L$.

 (H_3) $f^{-1}(B') = (f^{-1}(B))'$ for $B \in L_1$.

 $DEFINITION\ 1.2[2]$ Let $f:(L(M),\delta)\to (L_1(M_1),\delta_1)$ be an order-homomorphism; then

- (1) f is called weakly continuous if for each $B \in \delta_1$, $f^{-1}(B) \leq (f^{-1}(B^-))^{\circ}$.
- (2) f is called weakly continuous at $e \in M$ if for each $Q \in \eta$ (f (e)), $(f^{-1}(Q^{\circ}))^{-} \in \eta$ (e).

THEOREM 1.1 [2] Let $f:(L(M), \delta) \to (L_1(M_1), \delta_1)$ be an order-homomorphism; then the following conditions are equivalent:

- (1) f is weakly continuous.
- (2) For each $Q \in \delta_1$, $(f^{-1}(Q^{\circ}))^{-} \leq f^{-1}(Q)$.
- (3) There exists a base β of δ_1 such that for each $F \in \beta'$, $(f^{-1}(F^{\circ}))^{-} < f^{-1}(F)$.
- (4) There exists a base β of δ_1 such that for each $G \in \beta$, $f^{-1}(G) \leq (f^{-1}(G^{-1}))^{\circ}$.

THEOREM 1.2 [2] An order-homomorphism $f:(L(M), \delta) \rightarrow (L_1(M_1), \delta_1)$ is weakly continuous if and only if for every $e \in M$, f is weakly continuous at e.

2. THE CHARACTERIZATIONS DEPICTED BY MOLECULAR NETS

DEFINITION 2.1 Suppose that $(L(M), \delta)$ is a TML, then $e \in M$ is in the θ -closure of $A \in L$ (write $e \leq A^{\theta-}$) if $A \not = P^{\circ}$ for each $P \in \eta$ (e); A is called θ -closed if $A^{\theta-} \leq A$.

Evidently, if $e < A^-$, then $e < A^{\theta^-}$, i.e. $A < A^{\theta^-}$. Therefore A is θ -closed if and only if $A = A^{\theta^-}$.

THEOREM 2.1 An order-homomorphism $f:(L(M),\delta)\to (L_1(M_1),\delta_1)$ is weakly continuous if and only if for each $A\in L$, $f(A^-)\leqslant (f(A))^{3-}$.

PROOF. Necessity: Assume that f is weakly continuous and $A \in L$. In order to verify $f(A^-) < (f(A))^{\theta^-}$, we only need to prove that $f(e) < (f(A))^{\theta^-}$ for each $e \in M$ with $e < A^-$. For this purpose, let $Q \in \eta(f(e))$, using Theorem 1.2 we have $(f^{-1}(Q^{\circ}))^{-} \in \eta(e)$. Hence $A \leq (f^{-1}(Q^{\circ}))^{-}$ according to Theorem 2.2.5 in [4], and hence $f(A) \leq Q^{\circ}$ for each $Q \in \eta(f(e))$. This shows that $f(e) < (f(A))^{\theta^-}$ by Definition 2.1.

Sufficiency: Let $e \in M$ and $Q \in \eta$ (f(e)); then $f(e) \not\in Q$, equivalently, $e \not\in f^{-1}(Q)$. We asser that $(f^{-1}(Q^{\circ}))^{-} \in \eta$ (e). In fact, since $(f^{-1}(Q^{\circ}))^{-} \in L$,

 $f\left(\left(f^{-1}\left(Q^{\circ}\right)\right)^{-}\right)\leqslant\left(f\left(f^{-1}\left(Q^{\circ}\right)\right)\right)^{-1}\leqslant\left(Q^{\circ}\right)^{-1}$ in the light of the hypothesis. However, $(Q^{\circ})^{-1}\leqslant Q$ (otherwise, there is a molecula $b\leqslant\left(Q^{\circ}\right)^{-1}$ with $b\leqslant Q$. On account of $Q\in\delta_{1}$, so $Q\in\eta$ (f(b)), and so $Q^{\circ}\leqslant Q^{\circ}$. This is impossible.), Therefore $(f^{-1}\left(Q^{\circ}\right))^{-1}\leqslant f^{-1}\left(Q\right)$, thus $e\leqslant\left(f^{-1}\left(Q^{\circ}\right)\right)^{-1}$, i.e. $(f^{-1}\left(Q^{\circ}\right))^{-1}\in\eta$ (e). It follows from Theorem 1.2 that f is weakly continuous.

DEFINITION 2.2 Assume that N is a molecular net in $(L(M), \delta)$ and $e \in M$. If N is not eventually in P° for each $P \in \eta$ (e), then e is said to be a θ -limit point of N or call N θ -converge to e, in symbols $N^{\theta} \to e$. Put θ -lim $N = \bigvee \{e \in M: N^{\theta} \to e\}$.

From this definition we readily obtain that $e < \theta - \lim N$ if and only if $N^{\theta} \rightarrow e$.

THEOREM 2.2 Let $(L(M), \delta)$ be a TLM, $A \in L$ and $e \in M$; then $e \leq A^{\theta-}$ if and only if there is a molecular net N in A which θ -converges to e. PROOF. Suppose that $e \leq A^{\theta-}$, then $A \not\subset P^{\circ}$ for each $P \in \eta$ (e). Using Theorem 1.5.29 in [6], there is a molecula N(P) in A satisfying $N(P) \not\subset P^{\circ}$. Choose $N = \{N(P) : P \in \eta(e)\}$, one easily sees that N is a molecular net in A which θ -converges to e. Conversely, grant that $N = \{N(n) : n \in D\}$ is a molecular net in A which θ -converges to $e \in M$, then N is not eventually in P° for every $P \in \eta(e)$, i.e. there exists $n_{\alpha} \in D$ such that $N(n) \not\subset P^{\circ}$

whenever $n > n_0$ $(n \in D)$. Since N(n) < A for each $n \in D$, so $A \not < P^\circ$, and so $e < A^{\theta}$ by Definition 2.1.

THEOREM 2.3 An order-homomorphism $f:(L(M),\delta) \to (L_1(M_1),\delta_1)$ is weakly continuous at $e \in M$ if and only if for any molecular net N in L, $f(N) \circ \to f(e)$ whenever $N \to e$.

PROOF. Necessity: Presume that f is weakly continuous at $e \in M$ and that $N = \{N \ (n) : n \in D\}$ is a molecular net in L with $N \to e$. From Definition 1.2 $(f^{-1}(Q^{\circ}))^{-} \in \eta$ (e) for each $Q \in \eta$ (f (e)), thus there is $n_0 \in D$ satisfying N (n) $\not = \{f^{-1}(Q^{\circ})\}^{-}$ whenever $n \geqslant n_0$ ($n \in D$). This imply f (N (n)) $\not = Q^{\circ}$ as long as $n \geqslant n_0$. Consequently, f (N) $\not = Q^{\circ}$ converges to f (e) by Definition 2.2.

Sufficiency: If f is not weakly continuous at $e \in M$, then there is $Q \in \eta$ (f(e)) such that $(f^{-1}(Q^{\circ}))^{-} \notin \eta$ (e), i.e. $e \in (f^{-1}(Q^{\circ}))^{-}$. Hence according to Theorem 2.2.5 in [4], $f^{-1}(Q^{\circ}) \notin P$ for every $P \in \eta$ (e), thereby there exists a molecula $N(P) \in f^{-1}(Q^{\circ})$ with $N(P) \notin P^{\circ}$. Take $N = \{N(P) : P \in \eta(e)\}$; it is clear that $N \to e$ and f(N) does not θ -converge to f(e). So the sufficiency holds.

THEOREM 2.4 For an order-homomorphism $f:(L(M), \delta) \rightarrow (L_1(M_1), \delta_1)$ from a $TML(L(M), \delta)$ to a $TML(L_1(M_1), \delta_1)$, the following conditions are equivalent:

- (1) f is weakly continuous.
- (2) For every $e \in M$ and every molecular net N in L, $f(N) \circ \to f(e)$ whenever $N \to e$.
 - (3) For each molecular net N in L, $f(\lim N) \le \theta \lim f(N)$. PROOF. (1) => (2): It follows from Theorem 1.2 and Theorem 2.3.
- (2) => (3): Assume that N is a molecular net. For the sake of checking $f(\lim N) < \theta \lim f(N)$, we only need to verify that $f(e) < \theta \lim f(N)$ for each $e \in M$ with $e < \lim N$, equivalently, f(N) = + f(e) for each $e \in M$ satisfying $N \to e$. Therefore, Condition (3) follows from Condition (2).
- (3) => (1): Let $Q \in \delta_1$ and $e < (f^{-1}(Q^\circ))^-$; then there is a molecular net N in $f^{-1}(Q^\circ)$ such that $N \to e$ by Theorem 2.5.7 in [4]. Obviously, f(N) is a molecular net in Q° . Because f is order-preserving, $f(e) < f(\lim N) < \theta \lim f(N)$ according to Condition (3), i.e. f(N)

 $^{6} \rightarrow f$ (e). Hence f (e) < (Q°) 6 in the light of Theorem 2.2. But $(Q^{\circ})^{6}$ < < Q (See the proof in Theorem 2.3), so $e < f^{-1}(Q)$, and so $(f^{-1}(Q^{\circ}))^{-} < f^{-1}(Q)$. This shows that f is weakly continuous by Theorem 1.1.

3. THE CHARACTERS PORTRAIED BY IDEALS

DEFINITION 3.1 Let I be an ideal in $(L(M), \delta)$. $e \in M$ is said to be a θ -limit point of I if for each $P \in \eta$ (e), $P^{\circ} \in I$, in symbols $I^{\theta} \to e$. Write θ -lim $I = \bigvee \{e \in M: I^{\theta} \to e\}$.

 $D \ E \ F \ I \ N \ I \ T \ I \ O \ N \ 3.2$ Let β be an ideal base in $(L \ (M), \delta)$; then $I \ (\beta) = (A \in L)$: there exists $B \in \beta$ such that $B \geqslant A$ is an ideal in L, we call $I \ (\beta)$ the ideal generated by β and define $\theta - \lim \beta = \theta - \lim I \ (\beta)$.

The proofs of the following propositions are straightforward and are omitted. PROPOSITION 3.1 [7] If I is an ideal in $(L(M), \delta)$ and $e \in M$, then $I \circ \rightarrow e$ if and only if $e \leqslant \theta - \lim I$.

PROPOSITION 3.2[7] Assume that $f:(L(M),\delta) \to (L_1(M_1),\delta)$ is an order-homomorphism and that I is an ideal in L; then the following statements hold:

- (1) $f^*(I) = \{B \in L_1 : \text{there exists } A \in I \text{ such that for each } e \in M \text{ with } e \notin A, f(e) \notin B\}$ is an ideal in L_1 .
 - (2) (f(I'))' is an ideal base in L_1 .

THEOREM 3.1 In any TML $(L(M), \delta)$, $e < A^{\circ}$ if and only if there is an ideal l in L such that $A \notin l$ and $l^{\circ} \to e$, where $A \in L$ and $e \in M$. PROOF. Let $e < A^{\circ}$ and $P \in \eta$ (e); then $A \notin P^{\circ}$. Take $\beta = \{P^{\circ} : P \in \eta (e)\}$, it is clear that β is an ideal base in L. Choose l = l $(\beta) = \{B \in L : there exists <math>P \in \eta$ (e) such that $P^{\circ} > B\}$; then $A \notin l$ and $l^{\circ} \to e$. Conversely, suppose that there is an ideal in L with $l^{\circ} \to e$ and $A \notin l$. Using Definition 3.1, $P^{\circ} \in l$ for each $P \in \eta$ (e). Since l is a lower set, $A \notin P^{\circ}$, and so $e < A^{\circ}$.

THEOREM 3.2 An order-homomorphism $f:(L(M),\delta) \rightarrow (L_1(M_1))$

 δ_1) is weakly continuous at $e \in M$ if and only if for each ideal I in L with $I \to e$, $f * (I) * \to f (e)$.

PROOF. Necessity: Assume that f is weakly continuous at $e \in M$ and that I is an ideal in L satisfying $I \to e$. Then for each $Q \in \eta$ (f (e)), $(f^{-1}(Q^{\circ}))^{-} \in \eta$ (e) by Definition 2.1 and so $f^{-1}(Q^{\circ}) \in I$ in the light of Definition 1.1 in [7]. Now we affirm that $Q^{\circ} \in f^{*}(I)$. In fact, since $e \not = f^{-1}(Q^{\circ})$ if and only if f (e) $\not = Q^{\circ}$, $Q^{\circ} \in f^{*}(I)$ according to Proposition 3.2. Consequently, $f^{*}(I)^{\circ} \to f$ (e) using Definition 3.1.

Sufficiency: Let f be not weakly continuous at $e \in M$; then there is $Q \in \eta$ (f (e)) with (f^{-1} (Q°)) $^ \oint \eta$ (e) or $e < (f^{-1}$ (e)) $^-$. Hence there is an ideal I in L so that f^{-1} (Q°) $\oint I$ and $I \rightarrow e$ by Theorem I. 3 in [7]. Now we prove that Q° $\oint f^*$ (I). First of all, we will verify that f^* (I) $= \{B \in L_1 : Q^{\circ} \not\in B\}$. Suppose that there is $B \in f^*$ (I) satisfying $Q^{\circ} \leqslant B$; then there exists $A \in I$ with $e \not\in A$ such that f (e) $\not\in B$ by the definition of f^* (I), and so f (e) $\not\in Q^{\circ}$. This means that $e \leqslant A$ whenever f (e) $\leqslant Q^{\circ}$. Hence f^{-1} (Q°) $\leqslant A$. Since I is a lower set and $A \in I$, f^{-1} (Q°) $\in I$. It contradicts the definition of I. So f^* (I) $= \{B \in L: Q^{\circ} \not\in B\}$, and so Q° $\oint f^*$ (I). This shows that f (e) is not a θ -limit point of f^* (I). Therefore the sufficiency is proved.

THEOREM 3.3 An order-homomorphism $f:(L(M),\delta)\to (L_1(M_1),\delta_1)$ is weakly continuous at $e\in M$ if and only if for each ideal I in L satisfying $I\to e$, $(f(I'))'\to f(e)$.

PROOF. Necessity: Let f be weakly continuous and I be an ideal in L with $I \rightarrow e$; then $(f^{-1}(Q^{\circ}))^{-} \in \eta$ (e) for each $Q \in \eta$ (f (e)), and then $f^{-1}(Q^{\circ}) \in I$. Because $Q^{\circ} \neq f$ ($f^{-1}(Q^{\circ}) \neq f$),

 $Q^{\circ} < (f \ (f^{-1} \ (Q^{\circ} \ ') \) \ ' = (f \ ((f^{-1} \ (Q^{\circ} \)) \ ') \)'$ Put $A = f^{-1} \ (Q^{\circ} \)$; then $A \in I$ and $Q^{\circ} < (f \ (A' \)) \ ' \in (f \ (I' \)) \ '$. so $(f \ (I' \)) \ ' \ ^{\theta} \to f \ (e)$ in accordance with Definition 3.2.

Sufficiency: Grant that the condition is satisfied. If f is not weakly continuous at $e \in M$, then there exists $Q \in \eta$ (f (e)) such that $e \le (f^{-1}(Q^{\circ}))^{-1}$, and then there is an ideal I in L with $I \to e$ and $f^{-1}(Q^{\circ}) \notin I$ by Theorem $I \cdot 3$ in [7]. We asser that f (e) is not a θ -limit point of (f(I'))'. In fact, on account of $f^{-1}(Q^{\circ}) \notin I$, so $f^{-1}(Q^{\circ}) \notin A$, i.e. $Q^{\circ} \notin (f(A'))'$ for each $A \in I$. This imply

 $Q \circ \not\in (f(I'))'$. Therefore f(e) is not a θ -limit point of (f(I'))'. However, it contradicts the hypothesis. Consequently, f must be weakly continuous at e.

THEOREM 3.4 Let $f:(L(M),\delta) \to (L_1(M_1),\delta_1)$ be an order-homomorphism; then the following conditions are equivalent:

- (1) f is weakly continuous.
- (2) For each $e \in M$ and each ideal I in L such that $I \to e$, $f * (I) * \to f (e)$.
 - (3) For each ideal I in L, $f(\lim_{n \to \infty} I) \leq \theta \lim_{n \to \infty} f^*(I)$.

P r o o f. (1) => (2): It follows from Theorem 1.2 and Theorem 3.2.

- (2) => (3): Presume that I is an ideal in L, $e \in M$ and $f(e) \le f(\lim I)$. With f being order-preserving, we have $e \le \lim I$ or $I \to e$. Hence $f * (I) * \to f(e)$ follows from Condition (2). Thus $f(\lim I) \le \theta \lim f * (I)$.
- $(3) => (1): \text{Let } Q \in \delta_1 \text{ 'and } e \leqslant (f^{-1}(Q^\circ))^-; \text{ then there is an ideal } I \text{ with } I \to e \text{ and } f^{-1}(Q^\circ) \notin I \text{ by Theorem } I.3 \text{ in } [7]. \text{ Because of } f * (I) \subset \{B \in L_1 : Q^\circ \leqslant B\}, \text{ so } Q^\circ \notin f * (I). \text{ According to Condition } I$
- (3) we obtain $f(e) \le f(\lim I) \le \theta \lim f^*(I)$. Therefore $f(e) \le (Q^\circ)^{\theta} \le Q$, i.e. $e \le f^{-1}(Q)$

using Theorem 3.1, and so $(f^{-1}(Q^{\circ}))^{-} \leq f^{-1}(Q)$. On account of Theorem 1.1 it follows that f is weakly continuous.

Analogous to the proof of Theorem 3.4, we have the following result. THEOREM 3.5 Let $f:(L(M), \delta) \rightarrow (L_1(M_1), \delta_1)$ be an order-homomorphism; then the following conditions are equivalent:

- (1) f is weakly continuous.
- (2) For each $e \in M$ and each ideal I with $I \rightarrow e$ in L, (f(I'))' $e \rightarrow f(e)$.
 - (3) For any ideal l in L, $f(\lim l) < \theta \lim (f(l'))'$.

ACKNOWLEDGEMENT

The author wish to thank Professor Wang Guojun for his helpful instructions and suggestions.

REFERENCES

- [1] K. K. Azad, On fuzzy semi-continuity, fuzzy almost continuity and fuzzy weak continuity, J. Math. Anal. Appl., 82(1981), 14-32.
- [2] S. L. Chen, Order-homomorphisms on generalized topological lattices, J. J is anghan P etroleum I as t it ute, 2(1988), 96-97.
- [3] M. A. Erces, Functions, equivalence relations, quotient spaces and subsets in fuzzy set theory, F u z z y S e t s a n d S y s t e m s, 3(1988), 75-92.
- [4] G. J. Wang, Topological molecular lattices, Kexue Tongbao, 28(1983), 1089-1091.
- [5] G. J. Wang, Order-homomorphisms on fuzzes, Fuzzy Sets and Systems, 12(1984), 281-288.
- [6] G. J. Wang, Theory of L-fuzzy topological spaces, Shaaxi Normal University Press, 1988.
- [7] Z. Q. Yang, Ideals in topological molecular lattices, Acta Math. Sinica, 2(1986), 276-279.