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Abstract: In this paper we introduce the notion of signed A—mcasurcs by cxtending
the concept of g,—fuzzy mecasurcs to A—mcasurcs and investigate its basic propertics. More-
over, the decomposition thcorems with respect to signed A~mecasurcs arc presented, such as
thc Hahn decomposition thcorem, the Jordan decomposition thcorem and the Lcbesguc
decomposition theorem, in the form of extcnsion.
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1. Intreduction

Sugeno [6] introduced a class of non—additive sct [unclions g; which was called
g;—Tuzzy measurcs or i—additive luzzy mcasures and applicd it to treat complicated prob-
lems of engincering. Berres [1] showed that any i-—additive fuzzy mcasurc can be repre-
scnted by a density function as in probability thcory. A relation between A—additive fuzzy
mcasures and mcasurcs was given by Kruse [3] and this rclation was used to provc that any
A—additive fuzzy mcasurc u on a scmiring R there exists an cxtension of 4 to o—algcbra
gencrated by R. And then Krusc [4] introduced a fuzzy intcgral with respect to A—additive
fuzzy mecasures which is the proper tool to express fuzzy cxpectations and gave a
Radon—Nikodym—like thcorem. In this paper we the first extend the sct function’s valucs
from the unit interval {0,1] to the cxtended half—linc [0,+oc], by introducing the concept of
A—mcasure. Then the definition of signed A—mcasure is presented and some fundamental re-
sults concerning this notion, which arc usclul for the following discussion, arc proved.
Finally analogucs of some of the important dccomposition thcorem in measurc theory are

established for signed A—mcasurcs.
2. A—mecasuses and signed I-measuces

Throughout this paper, X denates a noncmpty sct, F a g—algebra on X and the pair
(X,F) a measurable space. The cxtended hall~line [0,+00] and the extended real line [~oo,+
oo] arc denoted simply by R , and R respectively.,

Deliniton 1. Let (X, F) be a measurable space, lct u: F—R N be a sct function, and lct

4 be a rcal number with A€ (=1 / supp, +o0) (supjr=supu(A)), i550. uis called a A—mecas-
AsF

»



ure on (X,F) (simply F) if it satis{ics.
(1) u($)=0, (2.1)
LA+ duta ) -1 | 22)
ami
for every scqucnce (A,) ol disjoint scts in F. _
Since —1 / supu < 4 and u(A) / supu< 1 (if p0), the incqualitics
1+Au(A)> 1-p(A) / supu>0

(2) WU A)=

hold for each A in F. It follows that 1+4u( U A,)> 0 and so [] (1+4u(A )50, in (2.2) (pre-

ciscly, ifA<0,0< f[ (+Ap(AN < 102> 0, TT (1+4p(A D)= 1). Hence [T (1+Au(A,)-117 A

awm] ] . aw]
in (2.2) always cxists, cithcr as a noncgative real number or as +oo,
Evidently, (2.2) implies the following identity

mgAn=ﬂﬂu+mum—n @3
for every finite scquence A, =+=+e- » Aol disjoint scts in F. In particular, for A, BE F, AN
B=¢, we have

H(AJB) = p(A)+u(B)+Au(A)u(B) ‘ (2.4)
and
H(A{JB)= u(A)+(1+Au(A))u(B) (2.5)

It follows immediately from (2.5) that a A~mcasurc on F is monotone, i. ¢., if AcB,
#(A) < u(B). In addition, in Thecorem 1 and 2 we shall sce that Sugeno’s g;,~fuzzy mcasurcs
on F [6] arc just A~mcasurcs on F with u(X) =1, 1€ (-1, +o0), 10,

We turn to the main definition of this paper.

Definition 2. Lct (X, F) bc a mceasurable space, let y: F—R bc a sct function, and lct
A(#0) be a rcal number which satisfy. '

(i) ifinfu>0, A€ (-1 / supy, +oo);

(i) if supu <0, A€ (—oo, -1/ infy);

(i) if supu>0 and infu<0, A€ (=1/ supy, -1/ infy)

whcere infu= infu(A) and supu=sup p(A). uis called a signed J-measure on F if it satis-
Ae¥ Ast

fics the conditions (2.1) and (2.2). .
If u(A) is finite for cach A€ F, u is said to be finitc, and if there cxists (A,)<F such

that u(A)) is finitc for cach n and X = U A,, s is said to be o—[initc on F.

Let 4 be a signed A-mcasurc on F. It arc same proof as for A-mcasurcs that

1+Au(A) >0 whenever A€ F and ]_[(l+41u(.éx,,))ae 0 for cvery infinitc scquence (A,) of

disjoint set in F.




Supposc that g is a signed A-mcasurc on the measurable spacc (X, F). Then the identi-
ties (2.3) (2.4) and (2.5) obviously hold. Morcover, for cach A in F H(AYH(T1+Apu(A))pu(AS)
must be defincd (that is, must not be of the form (+o9)+(=0) or (—eo)+(+o0)) and must be
cqual u(X). Hence if there is.a sct A in F for which u(A)=+oo, then u(X)=+co, and il
there is'a sct A in F for which u(A)=—o0 , then u(X)=—oo. Cdnscqucnlly a signed
A—mcasure can not includc both +oo and —oc among its valucs. A similar argument shows
that if B is a sct in F for which u(B) is finite, then u(A) is finitc for cach F~mcasurable
subsct A of B.

Example 1. If u is a A~mcasurc on F, then ~p is a signed —-A—-mcasurc on F.
Theorem 1. A sct function u: F~R isa signcd A—mcasurc on F il and only il it satis-

fics (2.1) (2.4), and it is continuity from below. (that is, u(lim A ) = limp(A,) for cvery in-

crcasing scquence (A,) of scts in F.)
Proof. If p is a signcd A—mcasure on F, clcarly u satisfics (2. l) and (2.4). Supposc that

"a

(A,) is an incrcasing scqucncc of sctin F. Then by letting Ay=¢

w(lim A )= (U (4, —A))-—[ﬂ(1+lu(A =411

ERT ] =0 A=l "+l

= hm-[n(l +Aud  — A ) —1]=limp(4 ).

newd g "—o

Hence, p is continuity from below. Converscly, if 4 satisfics (2.1) and (2.4), and it is continu-
ity from below, then using the identity (2.4) we get the identity (2.3) by induction, and by
using (2.3) and continuity from bclow we get (2.2), and this completes the proof of the theo-
rem,

Example 2. If i is a A-mcasurc on F, if v is a —A—mecasure on F, and if at lcast onc of
them is finite, then y = u~v—Apw is a signed A-measurc on F.

In fact it is trivial to verily via Examplc 1 that y satisfies all conditions in Theorem 1.
We shall soon sce that every signed A-mcasure ariscs in this way.

The following theorcm give two clementary but useful propertics of sngncd
A—mcasures.

Theorem 2. Let 4 be a signed A—mcasurc on F.

()ifA,BEF, A<Band lu(B)| < +eo, then |u(A)| < +o0 and

1#(B) —pu(A)
u(B — A)—m (2.6)

(2) u is continuity from above (that is, u(l/im A W)= limp(4 .) for every dccreasing sc-

quence (A,) of scts in F, with |[u(A )| < +oo for some n.) _

Proof. First part of (1) have been proved in the comment behind Definition 2 and the
cquality (2.6) can be proved by (2.5). |

Now supposc that (A,) is a dccrcasing chucncc of scts in F. and that {u(A,)] <+oo
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holds for somc n. We can assume that n = 1. Then we have the relations

Al”A.U(U(",—A‘“)) n=12

iw]

A, =limA \J(U,-4,)

se® =1

It is casy to scc that the sets A(—A,, A,—A,, =, A, _—A, A,arc disjoint, and so are the sc-

quence of sct A\—Ay, Ay~Ay, -, A,_—A,, limA,. Thus via (2.3) and (2.2) wc get

EY ]

respectively

WA = I+ A DT+ A, =i, D= 1] mm 1,200

(L)}

l L4
WA ) =110+ dpUim A DTTQA+ A4, — 4, N—-1]
new I=l
Let n approach infinity in the first resulting cquality, we have
I -
wA ) =71+ Aimp(A DITO+Aua, — 4, N-1)

L ] o}

Using the last two cqualitics and the fact that [] (1 + Au(4,— 4 o1 #0, we find

f=1

w(limA L) = limp(A . )» and this completes the proof of (2).

There exists the following rclationship between signed A-mcasurces and classical signed
mcasures, which has given by Krusc for A-additive fuzzy mcasurcs [3].
Theorem3. Let u be a finite signed A-mcasure on F. Defline a rcal function 0,: [infy,
supul>~R by letting
- log(1 + Ax)
i

Then the set function g™ =0, p=log(l+ix)/ 4 is a finite signed mcasurc on F.

0,(x)

Converscry, if 4° is a finitc signed mcasurc on F, then 0}' Y« u* is a finite signed A-measurc
on F where 07'(x)=(c*~1)/ 1, (A%=0).

Proof. Suppose that g is a finitc signcd A—mcasure on F and (A,) is a scquence of
disjoint stes in F. Then the relation (2.2) implics that

e IR MCUAD) et Ay -
R T =Zu(4)

and this proved that u° is a signcd measurc on F since 4" (¢)=0. Obviously u° is finitc.
Convc'rscly, il 4 is a finitc signcd mcasure on F. Definc the sot function u: F-R by
letling

B=0, *p =—e—o  (1:£0)



Then for ecvery sequence (A.) of disjoint scts in F
- RETRN
wUA )=

swi . A’

since u(@)=0. it follows that u is a finitc signed A—mcasurc onF.

= I+ aua, -1

3. Hahn and Josdan decomposition of signed 1-mcasures

In ordcr to establish the Hahn dccomposition of signcd A~mcasures, we first prove the
following lemma. '
Lemma 1. Let g be a signed A—mcasurc on F. Then there is set Cin F such that
u(C) = infu(A4)

Asf

Proof. Since the signed A—mcasure y cannot include both +oo and —o© among its val-

ucs, we can for dcfiniteness assume that —oo is not included. Let f=infiu(A), and choosc a
As?

scquence (A ) of scts in F such that

WA ) < BV(=n) 4

L]

hold forecachn. Let A= U 4 s and constructc a scquence A, of subclass by letting

nwl
A_={QA: : either A" =4, or A" =Ad—4}

for cach n. Then the sets of A, form a finite partition of A in F, and the larger n is , the
thiner the partition (that is, cach sct in A, is the union of some scts in A,,;). Again
constructe a scquence (B,) of scts by letting

‘Bu ”‘k{-cﬁ

we,)<0

Note that if E and F are disjoint sets in F and u(F) <0, then u(E{ JF)< u(E) and u(E{JF)>
u(F) via the equality (2.5). Hence for cach n u(A,) 2> u(B,). Morcover since B,‘U B,.is the
union of B,and some sets C; in A,,, which satisty C;(\B,=¢ and u(C) <0, then u(B,)>
M(B,| JB,,,), likewisc u(B,| JB,,)=>u(B,{ J B,+lUB,+z). Morc gencrally the incqualitics.

BV(=m+ 2 > a4 )>u8,UB,,,U=UB, >ul 5,)>8

Lwa

Hold for cach n’>n. Now dcfinc C by C=/imB" . Then C has the réquired property. In

(X )

fact, continuity from above of y and |u({) B,)l < + oo impliy that u(C)= limp( U B)

kea e  tes



= ﬂ,’and' we simultancously have proved that g > —oo,

Theorem 4 (Extcnsion of Hahn decomporition theorem).

Let 4 be s signed A~measurc on (X, F). Then

(1) there are disjoint sets A,BE€ F such that X= AU B and for an arbitrary
F-measurable subsct E of A(resp. B), u(E)> 0 (resp. u(B) < 0);

(2) if A, and B, also satis{ly thc condition abovc (1), then an arbitrary F—mcasurablc
subset of the symmetric diffcrence A,;AA (rcsp. B,AB) has mcasure zero under u.

Proof. (1) Let C have the required property in Iemma 1 and let B= C, A= C(the com-
plement of C). Then for each F—measurable subsct E of A,
()= MEUB) — 1(B)

1+ Au(B)

sincc u(B{ JE)> f. Similarly, for cach F~mcasurable subsct E of B

Aa(B) — (B — E)
B =G =B <° x

=0

sincc u(B—E) > §.

(2) ITEc< A|—A, on the onc hand sincc Ec Ay, u(E)=0, on thc other hand since Ec B,
M(E) <0, thercforc u(E)=0. Likewisc, if Ec A— ~A,, u(E)=0.

It follows that for each F—~mcasurablec subsct of A AA has mcasurc zcro under y. The
same conclusion holds for B;AB.

A pair (A,B) that satirly thc condition in (1) is called a Hahn dccomposition of a
signcd A-mecasure y. Notc that a signcd A-mecasrure can have scveral Hahn
dccompositions.

Example 3. IT X = {a,, a,, a,}, il F is the o—algcbra of all subscts of X, and il the signed

A-mcasure g is defined by A =-;— su({a D=1, u(fa,})=0, u(fa,})=-1, and

ud)=+ [H(l + du(a ) - 1]

a, 64

for an arbitrary sct A in F, then ({a,, a,}, {a,}) and ({a;}, {a,,a,}) arc both Hahn dccompo-
sitions of u.

Corollary 1 (Extcnsion of Jordan dccomposition theorem)

If u is a signcd A—mcasure on (X, F), if (A ,B) is 2 Hahn decomposition of g, if the sct
functions y#* and y~ is defined by

#(E)=w(ENA) and  p (E)=—-u(ENB)
for cach E in F, then
(1) u* and g~ do not depend on the particular Hahn decomposition used in their con
struction. .

(2) u#* is a A-mecasure on F, y'is a —A—mcasurc on F and at lcast onc of them is finitc,
and '

p= Aty
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Prool.(1) Supposc that (A, B) and (A,, B,) arc both Hahn dccompositions of u, then

forcachsct Ein F satisfics

ENA=[(A-A)NEIJANA, NE)

ENA,= [(AI-A)HEIU(AHAME)
Hence by Theorem 4 (2) and the rclation (2.4), we get that 2(ENA)=u(EN A,). Likewisc
M(ENB)=u(ENB,) holds for cach Ein F.

(2) Tt is clcar that g*is a A-mcasurc on F by Theorem 4(1), and by in addition a similar
argument as in Examplc 1, g4~ is a —A—mcasure on F. Sincc +oo and —oo cannot both occur
among the valucs of u at Icast onc of u* and u~ must be finitc. While the represcntation
p=pu"—p"=Ap*u" is a immediate conscquence of the cquality (2.4).

The representation u= p'—u™—Au*yu~ is called the Jordan dccompaosition of the signed
JA—mcasurc u. The variation |u| of signed A—mcasurc g, it is not surc to bc a A-mcasure, is
defined by |u) = p¥+u~+|Alut ™. It is casy to show that the sct function | is monotonc and
continuous, and for A € F, |u|(A)= 0 if and only if u*(A)=pu"(A)=0.

4. Lcbesgue decomposition of signed A—mcasures

Definition 3. Let u and v be two signed A—-mcasurcs on (X, F). If o(A) =0 whcncver A
€ F and |g|(A)=0, then v is said to be-absolutcly continuous with respect to 4, and denoted
by v« p. If therc is a sct NE F such that-lul(N) =0 and for cach A€ F Jpj(A-N)=0, then v
is said to be singular with respect to 4, and denoted by v .

Theorem 5. Let u and v be two signed A—mcasures on (X, F). Then the following ar-
guments arc cquivalent:

(W« p; (i)'« pand v «pu; Gii)lol <yl

The proof of Theorem 5 is similar to classical signed mcasure thecory, and so is omitted.

In the sequel, we need the following lemma.

Lemma 2. Let 4 be a A-measure on F, and let (A,) be a scquence of sets in F and salis-
fy lim p(A )=0. Then there exists a subscquence (A ) of (A,) such that u(lim A u)= 0.

L] {-w

Proof. Let ¢ be a positive number. Since lim u(A ,)=0, wc can construct a subscquence

L d g

(A,) of (A;) by choosing A, so that u(A,,)<§and then choosing A y(n,>n;) so that

(l +lu(Anl))”(An2) < ziz(thus "(AnlU An!) < ”(A|I)+(l+'lu(Anl))”(Anz) <§ + ;52_) and in
general, choosing the sets (A,) inductively so that n;> N and the rclations

e & P
A, U4, UUd )<+ R

hold for j=1,2,*--, Thus wc get a subscquence (A,) of (A,) such that
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u(UA y=limu(4,) <z

Mmew  jml}

Hence, for e=1 there is a subscquence (Af,'i’) of (A,) such that u(l ) 4 :‘:) < 1. Note that

so1

lim p(A 2’)=0 also holds for (AY)), and so for s=%thcrc is a subscquence (AD) of (AL}

o

such that p(U A ) < <. In general, for cach positive integer k thcrc is & subscquecnce (A )
fm]

of (A% ™) such that (UA ®
=1
Define a subsequence (A ;) of (A,) by n;= n;m fori=1,2,---. Obviously, (A) satisfics
k)k A al < U A al
fm

f=1

)< 1/ k, where (AD) denotes (A,).

for k= 1,2,~+-. and so the incqualitics. o

wlimA )< () 4,)< u(UA“’) <%
[d imk

—

hold for k= 1,2,+-+, it follows that u(lim A4 )= 0, and the proof is complete.

IEY

Theorem 6. Let 4 and v be two signed A—mcasurcs on F and v be finite. Then vy, il
~ and only if for each positive ¢ there is a positive 8 such that |v](A) <&, whenever A€ F and
lul(A) < é.

Proof. the sufficiency is evidcnt and we begin with the ncccssiiy.

Supposc that there is a positive number & for which there is no suitabic 4. For cach in-

teger n choosc an A_ € F such that lpl(An)<;l'- hold for n=1,2,---, According to Icmma 2

there is a subscquence (A,) of (A,) such that g* (limA )=0 and u~ (limA )=0,
(LY ] (L]

——— ~.

movcover [ul(lim A .)  =0.0n the other hand since |o] is monotone and finite
. fow

lvi(lth )—-Ixmlvl(UA )}llmlol(A D =e

- j=ik

Thus the sct A= limA , satisfics |4l (A)=0 but not |v|(A)=0, and so [ is not absolutcly

(BT ]
continuous with respect to |u|, morcover so v not u (Scc Theorem §5). This completes the
proof of the theorcm.
Theorem 7. Let u and v be signed A-mcasures on F. Then v g, if and only if. for cach
positive ¢ there is a set A in F such that [ul(A) < ¢ and |[vj(A°) <e.
Proof. The nccessity is evident and we shall verify the sufficiency.
For cach integer n choosca sct A, in F such that
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1 ) 1
lul(4,) <= and  Ii(4 )<~

the ﬁrst'incquality imply u*(A ) < :Tand (A <:—'-, and so wc get a scquence (A,) of scts in

F with limp * (4,)=0 and limp - (4,)=0. In vicw of Icmma 2 there is a subsequence

LY ] LY ]

(A,) of (A,) such that u* (lxmA =0 and p (IcmA ) 0, furlhcrmorc, lul(hmA ) =Q.

few l-= f-w

Since |o| is monotonc and continvity from bclow the relations

Ivl(lim A ) )= Ivl(lzmA )= Ixm lvl(ﬂ A° ) S limjol(4 :k) =0
ke

ndod twk

hold. Hence the sct N = lim A satisty |u|(N)=0 and |v|(A—N) =0 for cach A €F,i.c,vl

jom
u.

Theorem 8. Let u and o be signed A-mcasures on F. Then v« u and v_]_g, ifand only if
v(A)=0 whenever AEF. -

Proof. The sufficiency is clear and the nceessity can be casily proved by the conditions
v« p and v_l_u and the identity (2.4).

We can provc a similar and uscful argument in which other conditions are uscd instcad
of v being a singed A—measure in Thecorem 8.

Lemma 3. Let v be a nonnegative sct function on F with v(AUB) = p(A)v(B), whenever
ABEF and ANB=¢, and let 4 be a signed A-mcasure on F. If v and u sausfy (-1 «pu,
(v—1)_Lp, then v(A)=1 hold for cach A in F.

Proof. Using the condition v—1_]_u therc is a sct N in F such that ju|(N)=0 and
(A—-N)=1 whenever A € F. Since for cach A in F |u[{A(YN)=0 and v—1 «u, s(ANN)=1
hold for each A € F. Therefore

v(A)= v(A-N)U(AﬂN) =p(A-N)(ANN)=1
hold for each A in F and the proof is completed.

Lct us closc this paper by introducing the chcsgnc decomposition thcorem with re-
spect to signed A—measures. »

Theorem 9 (Extension of Lebesgue decomposition theorem)

Let p be a signed A—measure on (X, F) and lct v be a g—finite signed A—-mcasurc on (X, F).
Then there are unique g—finite signed 41—mcasurcs v, and v, on (X, F) such that the rcla-
tions '
v=ototdow, v.xp, v lp
hold. The decomposition above is called the Lebesgue decomposition of v.
Proof.-We begin with the casc in which v is a finitc signed A-mcasurc. Definc R, by
R,={A ! ACF and [u|(A)=0}
It is casy to chcck that R is a o—subring of F. Sincc |of is monotonc we can construct a sc-
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quence (N,) of scts in R, by choosing N, in R, so that [o](N,) = sup{|vi(A)::A€ R,, A= X},
and then choosing the remaining terms of (N,) inductivcly so that the realtions N, € R, and

Jol(N) = sup{lvl(A) AER, ,AcX~-{J N, }hold forn=2, 3,0 Obvxously, (N,) is a sequence

le}

of disjoint sets in R,,, and sincc |v] is continuity from above the rclations lim | v | ( N L)

.o

< lim Ivl(UN )=0 hold and so lim|v|(N )=0. Lct N\U N, and definc the sct functions

aem ima LY swi
v, v, by

v(A)=o(A-N), s(A)=0(ANN), AEF.
It is clera that |4}(N)=0 and both v, and v, arc finite signed A-mcasurcs on F. Let us check
that v, | px and 4.« u. On the onc hand for cach A in F [ol(A—-N)MN) =0, this implics ol u. |
On the other hand if A€ F and |u|(A)=0, then A 6 R,, and according to the construction
of N, the sct A satisfics

‘ﬁ

ol(4 — N) = limjol(4 — N ) < lim|o[(N_, ) =0

0N - R,
and v_(4) =10 follows. This show v«u. In casc v is a g—[initc signcd A-mcasure, lct (Xa)
be a partition of X into F-measurcablc scts that have finite measure under v, and for cach n
let F,={ANX,: A€ F}. Then F,is o—algcbra on X,. Thus we can apply the construction
above to the restrictions of the signed /I—mcasurcs s and o to the spaces (X,,F,). Lct N;, N,,

*== be the p—mull subscts of X,, X,, > thus constructed and let N= UN .Then o—finite

signed A—mcasurcs v, and v, defined by
v.=0(A-N), v, (A)=0(ANN), AEF
form a Lebesguc decomposition of v.
We turn to the uniqueness of the Lebesgue decomposition. Let
v=vto Ao, o.«p, o lu; o= ,+0,+405, B o«pu T lu
be two Lebesgue decompositions of v. First supposc that v is a finite signed A-mcasure.
Then the following identitics hold

v=0v_+0v, + lvev' = -l—[(l + }.vc)(l + J.v‘)— 1]
v=3c+5’+lﬁﬁ I{(1+lv 1+ A7 -1
It follows that
l+lvc 1+ Av,
1425, 1+,

1+ v _
Let =1 " lb‘t . It is casy to show that y(A() B)=y(A)y(B) whenever A,BE F, AN
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B= g, and (y~1)«pu, (y-1)_1_u. Therefore by Temma 3 y(A)=1 hold lor cach A in F. This
imply that ”e=3, and v, = 6.. The casc where v is a g—[inite singed A—mcasurc can be
dcalt with by similar was which has been used in the existence proofl of the Lebesguc de-

composition.
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