FUZZY ALMOST WEAK CONTINUITY

Bai Shi Zhong Department of Mathematic , Yanan University , Yanan, China

ABSTRACT

In this paper we introduce and study a new weaker form of fuzzy continuity---fuzzy almost weak continuity. And it is also weaker forms of both fuzzy weak continuity and fuzzy almost semicontinuity.

Key words: Fuzzy semiopen set; Fuzzy almost semicontinuous mapping; Fuzzy weakly semicontinuous mapping; Fuzzy weakly continuous mapping. Fuzzy almost weakly continuous mapping.

1. PRELIMINARIES

In this work, A^o , A^- , A_o , A_- and A' will denote respectively the interior, closure, semi-interior, semi-closure and complement of the fuzzy set A. Let $f: (X_1, \delta_1) \rightarrow (X_2, \delta_2)$ be a mapping from a fuzzy space X_1 to another fuzzy space X_2 , f is called (1) a fuzzy weakly semicontinuous mapping if $f^{-1}(B) < (f^{-1}(B_-))_o$ for each $B \in \delta_2[3]$. (2) a fuzzy almost semicontinuous mapping if $f^{-1}(B)$ is a fuzzy semiopen set of X_1 for each fuzzy regular open set B of $X_2[2]$.

2. FUZZY ALMOST WEAKLY CONTINUOUS MAPPINGS

Definition 1. A mapping $f: (X_1, \delta_1) \rightarrow (X_2, \delta_2)$ from a fuzzy space X_1 to another fuzzy space X_2 is called a fuzzy almost weakly continuous mapping if $f^{-1}(B) < (f^{-1}(B^-))_0$ for each $B \in \delta_2$.

Theorem 1. Let $f: (X_1, \delta_1) \rightarrow (X_2, \delta_2)$ be a mapping. Then the following are equivalent:

- (1) f is fuzzy almost weakly continuous.
- (2) $(f^{-1}(B^0)) = \langle f^{-1}(B) | for each fuzzy closed set B of X_2$.

- (3) $f^{-1}(B^0) \leqslant (f^{-1}(B^-))_0$ for each fuzzy set B of X_2 .
- (4) $(f^{-1}(B^0)) = \langle f^{-1}(B^-) \rangle$ for each fuzzy set B of X_3 .
- (5) there is a base η in δ_a , $f^{-1}(B) \leqslant (f^{-1}(B^-))_0$ for each $B \in \eta$.
- (6) there is a base η in $\delta_{2},\ (f^{-1}\left(B^{o}\right))_{-}\!\!<\! f^{-1}\left(B\right)$ for each $B'\in\,\eta$.

Definition 2. Let $f: (X_1, \delta_1) \rightarrow (X_2, \delta_2)$ be a mapping from a fuzzy space X_1 to another fuzzy space X_2 , f is said to be fuzzy almost weakly continuous at a fuzzy point p in X_1 if $B \in \delta_2$ and $f(p) \leq B$, there exists a fuzzy semiopen set A in X_1 such that $p \leq A$ and $f(A) \leq B^-$.

Theorem 2. A mapping $f: (X_1, \delta_1) \rightarrow (X_2, \delta_2)$ is fuzzy almost weakly continuous iff f is fuzzy almost weakly continuous for each fuzzy point p in X.

Proposition 1. Let $f: X \rightarrow Y$ be a mapping. Then the following statements are valid:

- (1) f is fuzzy weakly continuous. Then f is also fuzzy almost weakly continuous.
- (2) f is fuzzy weakly semicontinuous. Then f is also fuzzy almost semicontinuous.
- (3) f is fuzzy almost semicontinuous. Then f is also fuzzy almost weakly continuous.

Proposition 2. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be mappings. If f is fuzzy almost weakly continuous and g is fuzzy continuous, then gof is a fuzzy almost weakly continuous.

Theorem 3. Let $f: X \rightarrow Y$ be a mapping from a fuzzy space X to a fuzzy regular space Y. Then f is fuzzy almost weakly cotinuous iff f is fuzzy semicontinuous.

Lemma 1. Let X and Y be fuzzy spaces such that X is product related to Y. Then the product $A \times B$ of a fuzzy semiclosed set A of X and a fuzzy semiclosed set B of Y is a fuzzy semiclosed set of the fuzzy product space $X \times Y$.

Theorem 4. Let X and Y be fuzzy spaces such that X is product related to Y. Then for a fuzzy set A of X and a fuzzy set B of Y,

(1)
$$A_0 \times B_0 \leq (A \times B)_0$$
.

$(2) \quad (A \times B) = A_{-} \times B_{-}.$

Theorem 5. Let X_1 , X_2 , Y_1 and Y_2 be fuzzy spaces such that X_1 is product related to X_2 and Y_1 is to Y_2 . Then the product $f_1 \times f_2$: $X_1 \times X_3 \rightarrow Y_1 \times Y_2$ of fuzzy almost weakly continuous mapping $f_1: X_1 \rightarrow Y_1$ and $f_2: X_2 \rightarrow Y_2$ is fuzzy almost weakly continuous.

Theorem 6. Let X_1 and X_2 be fuzzy spaces and $p_1: X_1 \times X_2 \to X_1$ (i=1, 2) be the projection of $X_1 \times X_2$ onto X_1 . Then if $f: X \to X_1 \times X_2$ is a fuzzy almost weakly continuous, pof is also a fuzzy almost weakly continuous.

Theorem 7. Let X and Y be fuzzy spaces such that X is product related to Y and let $f: X \rightarrow Y$ be a mapping. Then, if the graph $g: X \rightarrow X \times Y$ of f is fuzzy almost weakly continuous, f is also a fuzzy almost weakly continuous.

References

- [1] K. K. Azad, J. Math. Anal. Appl. 82 (1981), 14-32.
- [2] Bai Shi Zhong, BUSEFAL, 48 (1991), 158-160.
- [3] Bai Shi Zhong, Fuzzy Sets and Systems, in press.
- [4] C. L. Chang, J. Math. Anal. Appl. 24 (1968), 182-190.
- [5] C. K. Wong, J. Math. Anal. Appl. 45 (1974), 512-521.
- [6] P. P. Ming and L. Y. Ming, J. Math. Anal. Appl. 76 (1980), 571-599.