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In this paper, it is studied that the relations of L-fuzzy
syntopogenous spaces and L-fuzzy topqlogical spaces. And the
conqectedhess of L-fuzzy syntopcgenous spaces is defined;
moreover, it is showed that the agreement of the corresponding
properties in L-fuzzy topological, L-fuzzy proximity and L-fuzzy
uniformity spaces. And also some of_properties concerning con-

nected set in L-fuzzy syntopogenous spaces are obtained.
/
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1. Introduction

A.Csédszar 1l gaﬁe the concept of syntopogenous structure for

‘the unified theory of topology, proximiﬁy and uniformity. A.K.Ka-

tsaras and C.G.Petélas £z,3,41 inproduced the fuzzy syntopogenous
structure and étudied the unified theory of fuzzy topology, fuzzy
proximity and fuzzy uniformity and obtained some similar proper-=

ties. In this paper, we shall study the relations of L-fuzzy syn-
topogenous spaces and L-fuzzy topological'spaces. And we shall

study the LFS-connectedness in IL-fuzzy syntopogenous Spaces, the
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LFF~ connectedness in L-fuzzy proxinity spraces and LIU-connected-

ness in L-fuzzy unifornity snaces.

2. Preliminaries

In this paper, L =(L, €, A, V> always denoios a comletely die-
tributive lattice with order-reversing invelution "'" (i.e. fuzzy
latfice). Let o be the least element and 1 be the afreatest one in
L. Suppose X is a noneapty (usual) set, an L-fuzzy set in X is a
map A: X — 1L, and LX will denote the family of all L-fuzzy sets
in X. It is clear that LX = (LX, £,A,V» is o fuzzy lattice, which
has the least element Y and the createst one 1, where g(x) = 0,
l(x) = 1 for any x €X.

The following principal definitions and lemmas about fuzzy syn-
topogenous structure are sinilar to [2,3,4] they can be exranded
to function domain which is L.

Definition 2.1. A binary relation <« on LX is called L-fuzzy semi-
topogenous orcer if it satisfies the following axions

(1) o«o and 1<<1- ;
(2) AB implies A<B ;

(3) A,€ A&B £B, implies A,<«B, .
1

1 1 1

The complement of an L-fuzzy semi-tdpogenous order & is the L-fuzzy
semi-topogenous order &% which is defined by
A «© B iff B' <A .

An’L-fuzzy semi-topogenous order ¢ is called

(a) symmetrical if & = «C

o c* i i < ~
(b) toposenous if A,«B, and A <B, imply AV A< B,VB, and

A AN KB AB;
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(c) perfect if A €By, j€J, implies \/Aj «\/Bj :
(4) biperfect if A «B,, jeJ, inrlies \/Ai « VB, ang
/\15 «:/\Ej .

Definition 2.2. An L-fuzzy syntoroeenous structure on X is a
nonempty set S5 of L-fuzzy tovogenous orders on X having the fol-
lowing proverties

(LFS1) S is directed in the sense that given any two menbers

<« <<‘2 of S there exists < in § finer than bLoth <«

1’
Y A, BeLr, A «B (or A<B) implies AKE;

and K., i,e,
1 <

(LFS2) For each « in S there exists <, in S such that A<?B
inplies the existence of an L-fuzzy zet D with A<«1])<K1R.
The pair (X, 3) is called an J-fuzzy syntopceencus space.

Lemma <.1. Let S be T~fuzzv syntonorencus structure on X%, then
the mapping A — AC = \/{B‘: B«KA, for some <<<-3} is an interior
operator znd so it céefines an I-fuzzy tcoprolory T1(S). If K. =

Ljv<<, then A ET1(S) iffa @:2 A . Converéely, for every L-fuzzy

«Kés3
topology on X there exists a pertect I-fuzzy syntoposenous struc-—

ture S1(T) = {«i , where AKB iff there exists D €T with A<D<S B.

Proof. See LZ21.

3. Fuzzy Syntorogenous Structure and Fuzzy Topclogy

' X
Proposition 3.1. Let (X,S) be I-fuzzy syntorogencus space, A€L",
then the mapping A +—> A* :-/\{B : ALB for some K € S; is a closure
operator and so it defines an L-fuzzy tooolosy TZ(S)
T.(S) = {A' c A =, Al
(4
‘The prcoof is similar to Le=ma Z.1 and hence omitted.

Theorem 3.2. Let S be I-fuzzy syntopogencus structure on X then

T1(S) X T2(S) in seneral.
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Proof. It follows from example 1.

~
Example 1. Let R denote the set of all decreasing function 2 : R
—[o , 1) such that Lin Als) = 1 and Lim N(s) = C. On R we consider
S4-00 S~» 00
the equivalence relation ~ defined by A~M iff A(t-) = M(t-) and
At+) = /A(t+) for all t € R, The fuzzy real line Ry is the set ﬁ)g
of all equivalence classes., For each A ¢ ﬁ, we will denote by Al

the equivalence class. For t €R, we define Lt ’ Rt to be the fuzzy

sets in Ry defined by L,xa1 = 1 = A(t-) and Rt'txj = Aa(t+), then
the collections Ty = { R, : teRf U {0, 1} and T, = {1, : ter} U
19 ’ 11 are fuzzy torologies on R? « For ¢ > 0, we define the order

relation «, on IR by A & B iff either A = 0 or B = 1 or there exi-

sts t € R such that A < L% &;Rth & B, From proresition 4.3 of [43,
the families Sp = {<«z: £>0} end 8, = {«i: £>01 are biperfect
fuzzy syntopogegous structures on(Ry, TI(SR> = TR’ T1(SL) = TL. Now
we prove T,(5;) € T,(S;). Indeeq,if AT, (5;), i.e.nA = V{B : B4,
for some <&feS, , &2 0}, it follows that [ /\{B : A" < B, for

. some <K€ SR H i)’U} 1 = \/ {B'; A'&, B, for some &, € SR’ g > O}

< <
=\/§B1 : B, <& A, for come «¢3 z_>o§ = A, thus A&T,(S;). From

L’
the same reason T, (SR) s_:T1 (SL). And this TZ(SR) = T1(oL). Similarly.
we have T2(SL) = T1(SR) = Tp. Becauée T, & Tp, thus T1(SR) ¥ T,(Sg),
T1(SL) X T2(SL).

Definition 3.1. An L-fuzzy syntopogenous spaces (X , S) is called

c
preserved complement if V <« €S, there exists & € S such that Ly

coarser than <« (i.,e. « fincr than <<? )

Proposition 7.3, If f : X — Y is a mapping and (Y , S' ) is preser-
-ved complement, then (X , f-l(S') ) is preserved complement, where

rsY) = {17 («) s «west]
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Proof. This proof can be verified directly.

Proposition 3.4, If { (x , S : jeJ§ is a preserved complement

j)
family, then (X, jE{JSj) is preserved complenent,

The proof is straight forward and hence omitted.

Propesition 3.5. If (X , 3) is preserved complement, then
T1(S) = T2(3).

Proof. See example 1.

Definition 3.Z. L-fuzzy semi-~topogenous order <« is called co-
perfect, if Aj« Bj, J€J, implies /\/\j & /\RJ..

Proposition 3.6. For any I-fuzzy topogencus order <« on X, there
exists a co-perfect L-fuzzy topcgenous order <<i finer than «
and coarser than any co-perfect L-fuzzy seni~-topogenous order on
X which is finer than « . It is defined by : A <<i B iff there is a
family {Bj H S J; of I-fuzzy sets such that B = jé}JBj and B<«Bj

for each j ¢ J, -

Proof., It follows easily from pefinition 3.2

Sela

We omit the proof of the following two propositions easily
established. |

Proposition 3.7. Let (X , S) be I-fuzzy syntopcgencus space, then
A€T2(s) iff A’ <<iA' .- If 3 ={«} is co -perfect, and thus AQTE(S)
iff A'&A'. | |

Proposition 3.8. Iet (X , T) be L-fuzzy topological space, then
T corresponds a ¢ o-rerfect I-fuzzy syntopogenous structure SE(T)
= {«} o It is defined by : ALB iff there exists CeLX, C'¢ T, and
ALC&B. If T, ¥ T, then 5,(T,) 4 S,(T,). |

Proposition 3.9. (1) Let (X, 3) be L-fuzzy syntopogenous space ,

then a) 8,(7,(5)) = {«®{, b) 31(12(.3)) = §<<i:§ .
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c) $,(1,(5)) = {«icg y  4) 3,(1.(5)) = {<<i§ .

P
. (2) Let (X , T) be L-fuzzy topological space, then
— 3 . V - '
a) T,(8,(1)) = T, b) T,(5,(1)) = ¢ [As 3 AL «T§ ,
o . _ v . oAt TN« A TYY = T
e) T,(5,(T)) = {VAy + ALeTf, @) T,(5,(T)) =1 .
Proof. (1) c) Let 32(’1'1(3)) = {<<o§ » if A & B, then there exists
¢ eLX such that ¢'«PC', a&C<B, thus A4C«P® C£B, so A<P® B .
Conversely, if A((I;C B, then B'% \/{/B : B<<§ A'ZsA', and
. p P . P o . . Par N
V{B : B <« A'}«S Viz : B A J, i.e. ViB : B A'}eT (), so
A<(Vis : B «A'} )7 & B, A & B. Similarly, we can prove a), b), d).
(2) b) Let 3,(T) = {«O}, if 4¢T,(5,(T)), since A €T,(8 (1)) iff
there exists {Aj 2 )€ Jf such that A' = f\Aj, A"«oAj’ jed, so
A'§Ci& Ay, Co€T, j€J, and thus A'= /\cj, A = Vcs, Cy€ T
Conversely, Let A = .Y _A., A' ¢T, then A" = AA!, NgAI <AL, so
y _ jedtyr 3 € A J It
) 1] ] 1 1 ] — 1 N 1 (A A W
A (<0Aj, A& /\Aj = A", i.e, AQT2(51(1)). Similarly, we can prove
a), c), d).
- 4. Connectedness in I-fuzzy Syntopcgenous Space

In this section, the connectedness of IL-fuzzy syntopogenous space
will be put forward. lNot only it is the expanding situaticn of [5]3 ,
but also it gives a unified treatment mothed of L-fuzzy set's con-
-nectedness in L-fuzzy topological space, proximity space, uniformity
space. And it provides a feasible frame for the further research of
its properties. |
Definition 4.1. Let ,(X , 59) be L-fuzzy syntopogenous space. CéLX
is called LFS-~connected iff there are no A x-(_), B % g, such that
(1) ALA, B&B for sbrne « € 5 (2.) C'2AAB, C'VAVB =1, C'VB £ 1,

'C'VA' x 1.
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For example, Let L = {¢ , 1§, CeL” (i.e. C<X), then C is S-con-
nected(see (5] ) iff C is LF3-connected.
Definition 4.2.( €71 ) Let (X ,T) be an L-fuzzv toprological space,

X
Cel 1is called connected iff there are no elements A % Cand B & O

in T such that C'ZAAB, C'VAVB =1, C'vA x 1 and C'VB ¢ 1.

Proposition 4.1. (1) Let (X ,S) be a down-perfect I-fuzzy syntopo-
genous space, and 5 = {<} ,I)eLX. If D is connected in (X , T2(8)>’
then D is LFS—connected in (X, 3).

(2) Let (X, T) be IL-fuzzy topological space and D€ LX. If D is
LFS~§onnected in (X, SE(T))’ then D is connected in (X , T).

Propesition 4.2. Any molecule in the topclesical molecular lattice
LX is L¥3-connected.

Theorem 4.2, If £ : (X, 3)—(¥ , S'} is (3 , 3')~centinucus(i.e.
for each <«'¢ 38 there exists <« € S finer than f—1( &') ), and D is
LFS-connected in (X , 3), then f(D) is LF3'—connected.

Proof. If not, there must be A x C, B 5 O such that (1) A«a, B«B,

for some <« ¢ S', (2) [£(D)]' 2AAB, t£(D)I'VAVB = 1, [F(D)J'VA{ I,

L) w0, £71B) v 0, and £

LE(D)I'Y B 4 1+ So £ (A), £71(B)eL
is (S ,‘é')-continuous, & € 3', then there must be ‘«oe S such that
f-1(<<) coarser than «_ « From Definition 2.1 (3) and Lenma 2.1,

it follows that £ '(A) « £ (A), £ (B) < £ '(8) and D' >[£(£(D)))"

>elmyas!

(B). Let M denote the collection of all molecules in
Lx(see £61 ), so A'y B' 2 f(D) :\/{f(b) : beM, bSD}. Thus be¢ 1,
b <D implies f(b)<A' or f(b)<B'. If f(b) %X A" holds for any b e,
b&D, then f(D)<B', Lf(D)]1'YAVE = [£(D)]'YA % 1, but it is im-

-possible, So we may chcose a molecule b€, bs D with f(b) <A,

Then DAL™ (A')2b % O, D'V £7'(A) % 1. Similarly D'V £-'(B) % 1.
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From this, we obtain the contradiction that D is not LFS-connected.

X

Theorem 4.4. Let (X, 35) be L-fuzzy syntopogencus space, F el

= [(F')O]', ((F')o see lLemma 2,1) if D is LFS-~connected and

2

DSE&E, then © is ILFS-connected.
Proof. If E is not I.FS-connected, then there must be A % O and

B % O, such that (1) A«A, B&B for some <« €8S, (2) E'>AAB,
E'*"VAVE = 1, E'VA x 15, E'VEB % 1. Now we prove D'V A £ 1, i.e.
DAA'" = Q. In fact , we may choose b¢M, b<D such that b £A', be-
~cause if ‘64}\' holds for any b ¢!, b<D, then D£B; and implies that
D<3'= B', and so E' VAVB = 'V A ¢ 1. Thus ve must have DAA % C,
i.e. D'V A X 1. Sinilarly D'vE ¥ 1. Hence D'>2AAR, D'VAVE = 1,
D'vAx 1 and D'V B & 1, but it is imponsible.

Proposition 4.5, Let {Dj : j«1}be a family of LFS-connected in

(X, S) such that Dj/\ D, x 0 helds for any j and k in I. Then

13
D = \/{Di s i¢ Ii is LF¥S-connected.

Proof. If D is not ILFS-connected, there must be A % ¢, B % C such
that for some « €S, ALKA, BKB, D'>AAE, D'VAVEB = 1, D'vB % 1,

D'VA % 1, thus we must have Di 2AA B and Di VAVB = 1 for/any i¢ I,

and Dij % 1 and DI::VB ¥ 1 for some j, k in I, then D3VB = D}':VA =
because both Dj and Dk are LFS-connected. Letting fuzzy point (see(8]
Xy eDjADk, we must have xAzf'x',' x,\ZB' by Dk/\A' = DjA B = 0. That

is to say that Dj/\ Dkzi:A'vB', thus D' 2 AAB, but it is impossible.
From the contradiction we have that D = V{ Di : ie Ii is LF3-connecte
Corollary 4.6. The union of any family {Di : ie¢ Ii Of LFS-connected
in (X , S) with /\iDi : i eI; % 0 is LFS-connected.
Let (XI, S) be L—fu.zzy syntopogenous space. We call a maximal

LFS-connected set a component in (X , S). From Proposition 4.2,
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Theorem 4.4, Corcllary 4.¢ we have the following propositicn.
Proposition 4.7. Let (X , 5) be L-fuzzy syntcpogenous space, then

(1) For each molecule b in LX, there exists a conponent Cb vith

b:ECb.

(2) For any component A, A= A
(3) If A and B are two different componehts in (X , S), then
A/\B=9.

Theorem 4.8, Let (X , S) be L-fuzzy syntopogenous space, then De¢ LX

is LFS-connected iff v x, ¢ D, then there exists LFJ-connected

’ %M

set & in (X ,S8) such that X5 %AGEISD.

Proof. If D is nct LFS-connected, then there must be A ¥ 0, B 5% O

such that for some «e 3, A«A, BLB, D£A'VDB', DAA'AB' = C,

DAA' % 0, DAB' 5 O . So there are fuzzy points x, , Ip € By, X, € D,
X, €A, X”
EAB' % O and it is clear that Z'>AAB, E'VAVB = 1. 3o E is not

¢ D, %ke-B', and £ is LF3-connected. Thus then E AA' # Q,

LFS-connected. Conversely , the prcof is straight forward and hence

omitted.
Theorem 4,9, Let {(xi ’ Si) s i 91} be a family of L-fuzzy syntopo-
genous spaces,

(1) 1 ( 0T x,. ,

ie 154 Si) is LFS-connected, then (Xi ’ Si) is

T
iel
- i . = IT

LFSi connected for any i eI, where S = ieISi°

(2) 1If (Xi , Si) is preserved complement and LF§-connected for any
iel, then ( }IIxi, $) is LPs-connected.

Proof. (1) Since the canonical projection are (3 , Si)—continuous,
each (Xi ’ Si) is LFSi-connected by Theorem 4.2.

(2) Let'(ziz be a fixed usual point of JZiXi, the subset Ej of the

product space consisting of all u-ual points {xix such that X; = 24



if i % j while %, may be any point of Xj 13 iconerrhic to X., andg
J ' J
hence is LF3-connected set centaining fzig . Clearly, for any finite

number of indices 31, Joe d eve 3 Jos BixE.x «ooxE; =E, i.e,
(a8

L I T J
the set of all usual points {x;} such that x, = s if i % Jyr 3

=
<

.o jm' is LI'S-connected and contains {z.} . 3ince {(X. S.) : i I}

is preserved complement, so ( inxi , JZ& l) is preserved ccmplement

iti 3 s A
by Proposition 3.3, 3.4. Thus & in ( i I i To A leI l)) is equal to
X in ( éI i 1eT ) By the proof of Theorem 3.7 (7] , we can get
T_T _ TT
E=E = 1éIX1’ by Theorem 4.4 it follows that ( GI i 31131) is

LFS~connected,

5. Connectedness in L-fuzzy Froximity and Uniformity Space

Definition 5.1. Let (X , & ) be L-fuzzy proximity space (8] ,
D&LX is called LFP~connected iff there are no A & O, B ¥ U such
that (1) A§ A', B § B', (2) D'2AAB, D'VAVB =1, D'VA % 1,
D'VB % 1.

By Definition 4.1, we can get following proposition,

Proposition 5.1, (1) Let (X , S) be a symmetrical L-fuzzy syntopo-
genous space and S = {«} , S« : A8B iff AKB', If Dert is LFP-
connected in (x » 8 ), then D is LFS-connected in (X , S).

(2) Let (X, & ) be L-fuzzy proximify space and g : A&B iff
A§ B'. If D&l is LFS5-connected in (X , 3 = {«,} ), then D is LFP-
-connected in (X , § ).

Definition 5.2, Let (X , U) be L-fuzzy quasi-uniformity space (91 ,
D ¢L* is called LFU-connected iff there are no A ¥ 0 and B & O such
that (1) A = ®(A), B = o(B) for some oL¢ U. (2) D' >AAB,

D'VAVB =1, D'vA =% 1, D'VB & 1.
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Lemma 5.2. To every biperfect L-fuzzy tcpogenous order <« gn X

Y
corresponds w( <€) = oo« = & : Lx~>L“ defined by «(A) = A {B :

A<<B3 . If S is a biperfect IL-fuzzy syntopogenous structure on X,
then the family w(S) = {w(<<) : «¢ S} is a base for I-fuzzy quasi-
uniformity on X, then w-1(B) is a biperfect L-fuzzy syntopogencus

structure on X.

Proof. See C21 ,
From Definition 4.1, 5.2, we get the following propesition,

Proposition 5.3. (1) Let (X , S) be I-fuzzy biperfect syntopo-
genous space, DeLX is LFU-conected in (X , U(w(3))), where w(S) is
the base of U(w(S)) , then D is LFS-connected in (X ,3).

(2) Let (X f‘U) be L-fuzzy guasi-uniformity space, B be the base
of U. If D eLX is LFS-connected in (X , S = w~1(B)), then D is LFU-~

—-connected in (X , U).
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