Some properties of fuzzy semi-topological elements

Ma Bao-guo

Department of Mathematics, Yan' an University. Yan' an China

Abstract: In this paper, first the concept of the semi-boundary of an element in a fuzzy to pological space is definition, and further investigate some properties of fuzzy semi-boundary element fuzzy semi-interior element and fuzzy semi-cloures element, and its application.

Throughout this paper L will denote a fuzzy lattice. Let 0.1 denote the least element and the greatest element in L respectively. M will denote the collection of all molecules in L, therefore we also use L(M) to denote L. Let δ be a topology on L. Then (L. δ) is called a fuzzy topological space, or briefly fts. The elements of δ are called open elements and the elements of δ are called closed elements. Where δ = $\{A' \mid A \in \delta\}$, Let

 $A^0 = \bigvee \{B \in \delta \mid B \leq A\}$

called the interior of A. and let

 $A^- = \wedge \{B \in \delta \mid A \leq B\}$

called the closure of A.

A element $B \in L$ is called a semi-open element of δ if there exists $0 \in \delta$, Such that $0 \le B \le \tilde{0}^-$, where 0^- expresses the closure of 0. FSO(L, δ) will denote the family of all semi-open elements in (L, δ). If 0 is open in (L, δ), then 0 is semi-open in (L, δ).

If B is semi-open element of δ then B' are called semi-closed element of δ . FSC(L, δ) will denote the family of all semi-closed element in (L, δ).

For each element A in L, let $A_0 = \bigvee \{B \in FSO(L, \delta) \mid B \leq A\}$ called the semi-interior of A, and let $A_- = \bigwedge \{B \in FSC(L, \delta) \mid A \leq B\}$ called the semi-closure of A.

Theorem 1 Let (L, δ) be a fts, A, B \in L, then

- (1) $A \in FSO(L, \delta)$ iff $A=A_0$,
- (2) $A \in FSC(L, \delta)$ iff $A=A_{-}$.
- (3) $A_{-} = A_{-}, A_{00} = A_{0}$
- (4) if $A \le B$, then $A_0 \le B_0$, $A_{\perp} \le B_{\perp}$,
- $15) A_{\vee} B_{\leq} (A \vee B)_{\perp}$

- (6) $(A \wedge B) \leq A \wedge B$,
- (7) $A_o \vee B_o \leq (A \vee B)_o$.
- (8) $(A \wedge B)_o \leq A_o \wedge B_o$.

Theorem 2 Let (L, δ) be a fts, $A \in L$, then

- (1) $(A_{-})^{-} = (A^{-})_{-} = A^{-}$,
- (2) $(A_0)^{\circ} = (A^{\circ})_0 = A^{\circ}$.

Theorem 3 Let (L, 5) be a fts A, Be L, then

- (1) if $A_=B_-$, then $A^-=B^-$.
- (2) if $A_0=B_0$, then $A^0=B^0$.

The inverse of Theorem 3 is not valid in general.

Theorem 4 Let (L, δ) be a fts, $A, B \in L$, then

- (1) if A or B $\in \delta'$, then $(A \vee B) = A \vee B$
- (2) if A or B $\in \delta$, then $(A \wedge B)_o = A_o \wedge B_o$.

Definition | Let (L, δ) be a fts, $A \in L$, and put

 $[A] = \{a \in M \mid a < A_a \text{ and } a < A_o\}$

 $A_{\bullet} = \vee [A]$

Then the points in [A] are called semi-boudary points of A, and A is called the fuzzy semi-boundary of A.

Theorem 5 Let (L, δ) be a fix, $A \in L$, then

- (1) $0_{\bullet} = 0$, $1_{\bullet} = 0$,
- (2) $A_{\bullet} \leq A_{-}$.

Proof. By Definition 1 it is clear.

Theorem 6 Let (L, δ) be a fts, $A \in L$. Then the following conditions are equivalent:

- (1) $A_{\bullet} = 0$
- (2) A is an semi-open and semi-closed element.

Proof. The conclusion is obvious.

Theorem 7 Let (L, δ) be a fts, $A \in L$. Then

- (1) $A_==A_o \vee A_o$,
- (2) $A_=A \vee A_e$.

Proof (1) This follows from Definition 1.

(2) By $A_=A_0 \lor A_0 \le A \lor A_0 \le A_{\perp}$.

Theorem 8 Let (L, δ) be a fts, $A \in L$. Then

- (1) A is a semi-closed element iff A_∞ < A,
- (2) A is a semi-open element iff (A') . < A'.

Proof (1) suppose $A \in FSC(L, \delta)$, then $A=A=A \lor A_a$, by theorem 7 and hence $A_a \leqslant A$, conversely, suppose that $A_a \leqslant A$; then $A=A \lor A_a=A$ by theorem 7. Hence A is a closed element.

(2) The conclusion is obvious from (1).

Theorem 9 Let (L. 8) be a fts, Af L. Thea

- (ii) if As is a semi-closed element, then Ass SAs
- (2) Ae & Aa,
- (3) A . S A.

Proof. (1) By Theorem 8.

- (2) If $A_0=0$, then the conclusion is clear. If $A_0=0$, then for each $a \in [A_0]$. We have $a \le A_0 \le A_0$ and $a \le A_0 = A_0$. Hence $a \le A_0$ and $A_0 = \le A_0$.
- (3) If $A_{\bullet}=0$, then the conclusion is clear. If $A_{\bullet}\neq 0$, then for each $u\in [A_{-}]$, We have $a\leq A_{-}=A_{-}$ and $a\leqslant A_{-}$ hence $a\leqslant A_{0}$ by $a\leqslant A_{-}=A_{-}$ and $A_{0}\leqslant A_{0}$. Thus $a\leqslant A_{0}$ and $A_{-}\leqslant A_{0}$.

Theorem 10 Let (L, δ) be a fts, A, B and C \in L. Then

- (i) if $A \le B$, then $A \le B \lor B \le$,
- (2) $C_{-}=C_{o_{-}}$ iff $C_{o} \leq C_{o_{-}}$.

Proof. (1) It follows that $A_{\bullet} \leq A_{-} \leq B_{-} = B \vee B_{-}$ from Theorem 5. Theorem 7 and $A \leq B_{-}$

(2) The necessity is clear by Theorem 7. Now suppose that $C_a \cap C_{o_+}$ then $C_- = C_o \cap C_o < C_o \vee C_{o_-} = C_{o_-}$ by Theorem 7. Hence $C_- = C_{o_-}$.

Definition 2 Let $f: (L_1, \delta_{-1}) \to (L_2, \delta_{-2})$ be an order -homomorphism (see[1]), If for each $B \in FSO(L_2, \delta_{-2})$, $f^{-1}(B) \in FSO(L_1, \delta_{-1})$, then f is said to be irresolute. If for each $A \in FSO(L_1, \delta_{-1})$, $f(A) \in FSO(L_2, \delta_{-2})$, then f is said to be semi-open if for each $A \in FSC(L_1, \delta_{-1})$, $f(A) \in FSC(L_2, \delta_{-2})$, then f is said to be semi-closed.

Theorem 11 Let $f: (L_1, \delta_1) \rightarrow (L_2, \delta_2)$ be an order-homomorphism Then the following conditions are equivalent:

- (1) f is irresolute,
- (2) For each $C \in FSC(L_2, \delta_2)$, $f^{-1}(C) \in FSC(L_i, \delta_1)$,
- (3) For each $A \in L_1$, $f(A_1) \leq (f(A))_1$,
- (4) For each $B \in L_2$, $(f^{-1}(B)) \leq f^{-1}(B_1)$,
- (5) For each $B \in L_2$, $f^{-1}(B_0) \leq (f^{-1}(B))_0$,

Proof By definition 2 and Theorem 1 it is clear.

Theorem 12 Let $f: (L_1, \delta_1) \rightarrow (L_2, \delta_2)$ be an order-homomorphism. Then the following condition are equivalent:

- (1) f is irresolute,
- (2) For each $A \in L_1$, $f(A_*) \leq (f(A))_{-}$.
- (3) For each $B\in L_{2},\;\left(f^{-1}\left(B\right)\right)$, $\leqslant f^{-1}\left(B_{\perp}\right)$.

Proof. (1) \Longrightarrow (2) For each $A \in L_1$, it follows that $A : A = A_1$ by Theorem 5, hence $f(A_0) \le f(A_1)$ by (1) and Theorem 11.

- (2) => (3) By (2) and Theorem 1.1 in [3], We have $f((f^{-1}(B))_{\bullet}) \le (ff^{-1}(B))_{-} \le B_{-}$, and hence $(f^{-1}(B))_{\bullet} \le f^{-1}(B_{-})$
- (3) => (1) By virtue of theorem 7 and (3) it follows that $(f^{-1}(B)) = f^{-1}(B) \vee (f^{-1}(B)) = f^{-1}(B) \vee (f^{-1}(B)) = f^{-1}(B)$, for each B $\in L_2$, and hence f is irresolute by theorem 11.

Theorem 13 Let $f: (L_1, \delta_1) \rightarrow (L_2, \delta_2)$ be an order-homomorphism. Then the following conditions are equivalent:

- (1) f is semi-open,
- (2) For each $A \in L_1$, $f(A_0) \leq (f(A))_0$.
- (3) For each $A \in L_1$, $f(A_0) = (f(A_0))_0$ Proof (1) \Longrightarrow (2). For each $A \in L_1$, it following that $f(A_0) \leqslant f(A)$ and hence $f(A_0) = (f(A_0))_0 \leqslant (f(A))_0$ by (1).
- (2) => (3) For each $A \in L_1$, we have $f(A_0) = f(A_{00}) \le (f(A_0))_0$ by (2), hence $f(A_0) = (f(A_0))_0$.
- (3) ==) (1) For each $A \in FSO(L_1, \delta_1)$, it follows that $f(A) = f(A_0) = (f(A_0))_0 \in FSO(L_2, \delta_2)$ by (3). Thus f is semi-open. Theorem 14 Let $f: (L_1, \delta_1) \rightarrow (L_2, \delta_2)$ be an order-homomorphism Then the following conditions are equivalent.
 - (1) f is semi-closed.
 - (2) For each $A \in L_{\lambda}$, $(f(A)) \subseteq \langle f(A_{\perp}) \rangle$.
- (3) For each $A \in L_1$, $f(A_1) = (f(A_1))_+$. Proof (1) \Longrightarrow (2) For each $A \in L_1$, it follows that $(f(A))_- \leqslant (f(A_1))_- = f(A_1)$ on account of $A \leqslant A_1$ and (1).
 - (2) \Longrightarrow (3) For each $A \in L_1$, we have $(f(A_1)) \subseteq f(A_2) = f(A_1)$ by (2) and hence $f(A_1) = (f(A_1))$.
- (3) \Longrightarrow (1) For each $A \in FSC(L_1, \delta_1)$, it follows that $f(A) = f(A_1) = (f(A_1)) \in FSC(L_2, \delta_2)$ by (3). Thus f is semi-closed.

References

- [1] Wang Guo-jun. Pointwise topology on completely distributive lattices (1), (2), J. Shaanxi Normal University (Nat. sci. Ed,) (1) (1985) 1-17, (2) (1985) 1-15 (in china)
- [2] Li Hou-yuan. Some propertise of Semi-topological Subsets. J. Math. Res. and Exp. 11(3) (1991) 355-358 (in china)
- [3] K. K. Azad. On fuzzy semi-continuity, fuzzy almost continuity, J. Math. Anal. Appl 82 (1981) 14-32.