SOME TOPOLOGICAL PROPERTIES OF L-MULTIFUNCTIONS

MARIAN MATŁOKA

Department of Mathematics, University of Economics, Poznań, Poland.

In this paper new topological concepts connected with L-multifunctions theory are introduced and their properties are investigated. These concepts and properties are indispensable in connection with the analysis of L-economic systems.

Continuing our considerations on L-multifunctions we are using the abbrevations and notations from [1].

Definition 1. An L-multifunction, $F: x \rightarrow P(Y)$ say is called closed iff its graph W_F is a closed set.

C o r o l l a r y. For any closed L-multifunction its converse L-multifunction is closed.

Definition 2. An L-multifunction, a:X \rightarrow P(Y) say, is sequentially bounded iff for any bounded sequence S={x_n} and any sequence R={r_n}, x_n \in X, r_n \in (0,1>, the set {(y,t)} \in Y*I : (x_n,y,r_n,t) \in W_F,x_n \in S,r_n \in R} is bounded.

Theorem 1. If $F: X \rightarrow P(Y)$ and $G: Y \rightarrow P(Z)$ are closed L-multifunction and F is sequentially bounded L-multifunction, then $G \circ F$ is a closed L-multifunction.

Proof. Let (x_n,z_n,r_n,p_n)∈ W_G and let

 $(x_n,z_n,r_n,\rho_n) \longrightarrow (x_0,z_0,r_0,\rho_0) \text{ as } n \longrightarrow \infty \text{ (the convergence may be taken e.g. with respect to each coordinate separately)}, x_n \in X, \\ z_n \in Z, \ r_n, p_n \ (0,1) \ . \ \text{We will prove that } (x_0,z_0,r_0,p_0) \in W_{GoF}. \\ \text{For any } n \ (x_n,z_n,r_n,\rho_n) \text{ belongs to } W_{GoF} \text{ iff there exist } C_n \in Z, \\ h_n \in I^Z \text{ such that } (x_n,C_n,r_n,h_n) \in GoF \text{ and } z_n \in C_n,h_n(z_n) = p_n. \\ \text{An element } (x_n,C_n,r_n,h_n) \in GoF \text{ iff there exist } (x_n,B_n,r_n,f_n) \in F \\ \text{and } (y_n,C_n,t_n,h_n) \in G \text{ such that } y_n \in B_n \text{ and } f_n(y_n) = t_n. \\ \text{From the above conditions it follows that}$

 $(x_n, y_n, r_n, t_n) \in W_F$ and $(y_n, z_n, t_n, p_n) \in W_G$.

Because F is a sequentially bounded and closed L-multifunction and G is a closed L-multifunction we observe that the sequences $\{y_n\}$ and $\{t_n\}$ are bounded and without losing generality we may assume that $y_n \rightarrow y_0$ and $t_n \rightarrow t_0$ as $n \rightarrow \infty$. Moreover

 $(x_0,y_0,r_0,t_0) \epsilon \ \, \mathbb{W}_F \ \, \text{and} \ \, (y_0,z_0,t_0,p_0) \epsilon \ \, \mathbb{W}_G.$ This means that there exist $B_0 \epsilon P(Y)$, $f_0 \epsilon I'$ such that $y_0 \epsilon B_0$, $f_0(y_0)=t_0$, $(x_0,B_0,r_0,f_0) \epsilon F$ and there exist $C_0 \epsilon P(Z)$, $h_0 \epsilon I^Z$ such that $z_0 \epsilon C_0$, $h_0(z_0)=p_0$, $(y_0,C_0,t_0,h_0) \epsilon G$. This means that $(x_0,C_0,r_0,h_0) \epsilon G \epsilon F$. Because $z_0 \epsilon C_0$, $h_0(z_0)=p_0$ so $(x_0,z_0,r_0,p_0) \epsilon W_G F$.

Theorem 2. If an L-multifunction $F: X \rightarrow P(Y)$ is closed and for any $r, t \in I(0, y, r, t) \notin W_F$ for $y \ne 0$, then F is a sequentially bounded L-multifunction.

Proof. According to Definition 2 it suffices to show that for any bounded sequence $S = \{x_n\}$ and any sequence $R = \{r_n\}$, $x_n \in X$, $r_n \in (0,1)$ the set $T = \{(y,t) \in Y \times I : (x_n,y,r_n,t) \in W_F\}$ is bounded. Suppose that the set T is unbounded for some S and some R. Then there exist the sequences $\{y_n\}, \{t_n\}, (y_n,t_n) \in T$ such that $\|y_n\| \to \infty$ as $n \to \infty$. But $(x_n,y_n,r_n,t_n) \in W_F$ and F is a conical L-multifunction, so $(x_n/\|y_n\|,y_n/\|y_n\|,r_n,t_n) \in W_F$. Hence, there exist subsequences x_n, y_n, x_n, t_n such that

 Because F is a closed L-multifunction, so $(0,y_0,r_0,t_0) \in \mathbf{W}_F \qquad \text{for } y_0 \neq 0 \qquad \text{- a contradiction }.$

Definition 3. A fixed of the L-multifunction $F:X\to P(X)$ is an element $\bar x\in X$ such that there existe r,t from I such that $(\bar x,\bar x,r,t)\in W_F$.

Theorem 3. (Fixed point theorem). Let C be a nonempty convex and compact subset of X. If $F:C \rightarrow P(C)$ is a closed, conical and superadditive L-multifunction, then F has a fixed point in C.

P r o o f . Let us consider a point -to-set mapping $F: \mathbb{C} \to \mathsf{P}(\mathbb{C})$ such that for any xeC

$$\hat{F}(x) = \{ y \in \mathbb{C} : \exists r, t \in \mathbb{I}, (x,y,r,t) \in W_F \}.$$

First we will prove that \bar{x} is a fixed point of \bar{F} iff \bar{x} is a fixed point of \hat{F} . If \bar{x} is a fixed point of \hat{F} , then $\bar{x} \in \hat{F}(\bar{x})$. This means there exist r,t \in I such that $(\bar{x},\bar{x},r,t)\in W_F$,i.e. \bar{x} is a fixed of F. Now, if \bar{x} is a fixed point of F then from Definition 3 it follows that there exist r,t from I such that $(\bar{x},\bar{x},r,t)\in W_F$. This means that $\bar{x}\in\hat{F}(\bar{x})$, i.e. \bar{x} is a fixed point for \hat{F} . Now, we will show that \hat{F} satisfies the hypothesis of Kakutani fixed point theorem,i.e. that \hat{F} is a closed mapping and for any $x\in C$ $\hat{F}(x)$ is a convex set.

Convexity. Let y_1,y_2 be elements from $\hat{F}(x)$. From the definition of \hat{F} it follows that there exist elements r_1,r_2,t_1,t_2 from I such that $(x,y_1,r_1,t_1)\in W_F$ and $(x,y_2,r_2,t_2)\in W_F$. This means that there exist $B_1,B_2\in P(C)$ and $f_1,f_2\in I^C$ such that $(x,B_1,r_1,f_1)\in F$, (x,B_2,r_2,f_2) F and $y_1\in B_1$, $y_2\in B_2$, $f_1(y_1)=t_1$, $f_2(y_2)=t_2$. Because F is a conical and superadolitive L-multifunction, so for any $x\geqslant 0$ $(x,x,B_1,+(1-x),B_2,\min(r_1,r_2),x,f_1+(1-x),f_2)\in F$. This means, that $(x,x,y_1+(1-x),y_2,\min(r_1,r_2),t)\in W_F$, where $t=(x,f_1+(1-x),f_2)$ $(x,y_1+(1-x),y_2)$, i.e. $(x,y_1+(1-x),y_2)\in \hat{F}(x)$.

Now,let us consider a sequence $\{x_n\}$, $x_n \in \mathbb{C}$ such that $x_n \to x_0$ as $n \to \infty$. Let $y_n \in \widehat{F}(x_n)$ and $y_n \to y_0$ as $n \to \infty$. We will prove that $y_0 \in \widehat{F}(x_0)$. If $y_n \in \widehat{F}(x_n)$ then for any n there exist $r_n, t_n \in I$ such that $(x_n, y_n, r_n, t_n) \in W_F$. Without losing generality we may assume that $r_n \to r_0$, $t_n \to t_0$ as $n \to \infty$. Because F is a closed L-multifunction, so $(x_0, y_0, r_0, t_0) \in W_F$. This means that $y_0 \in \widehat{F}(x_0)$ i.e. \widehat{F} is a closed mapping. So, according to the Kakutani theorem there exists an element $\overline{x} \in \mathbb{C}$ such that $\overline{x} \in \widehat{F}(\overline{x})$. This means that an L-multifunction F has a fixed point \overline{x} in \mathbb{C} .

References

1 Matłoka, M.: Introduction and general properties of L-multifunctions, BUSEFAL (in point).