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ABSTRACT

On the basis of references [1], [2], this paper further
discusses the charactors of realizable fuzzy matrices and
elementarily investigates relation between the rank and the
containment of realizable fuzzy matrices.
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1 RELATIVE CONCEPTS

Assume thatl&nxm expresses a set consisting of all the nxm
fuzzy matrices.

Definition 1.1 [1] Let A€ || ym» the space that is generated
by the all row vectors of A is called row space of A and
expressed as R(A). The number of vectors in the minimum generat-
ing basis of R(A) is called row rank of A and expressed as Pr(A).

The column space c{A) and the column rank PC(A) of A may be
similarly defined.

If Pr(A)=PC(A)=t, then the number t is called rank of A and
expressed as P(A).

Definition 1.2 [2] Let A€M s the schein rank of A is the
minimum number of the fuzzy matrices whose rank is all one and
the sum of which is just equal to A and expressed as P_(4).

Definition 1.3 [1] Let A=(a), ... ,a), B=(b;, ... ,b),

ai,bjé[0,1](1=1, see 0, J=1, ... ,m), then (A,B):AT~B=(aib )nXm

is called cross product multiplied A by B,
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Definition 1.4 [2] Suppose that B is a nxn symmetrical fuzzy
matrix, B is called the realizable fuzzy matrix if there exists
a fuzzy matrix Ae/unxm making B=A'AT. The A hére is called a
realizable matrix of B. And the number

r{B)=min {t[aAe/umt and A-AT=B}

w_here-/unxt is a set consisting of the all fuzzy matrices with
n row vectors is called containment of B.

For the convenience of description in the following, we fur-
ther suppose that/uR expresses the set consisting of all the

nxn realizable fuzzy matrices in || and do not distinguish

nyn
sign "." from sign "A" and sign "¢" from sign "y", too.

2 THE RELATION BETWEEN THE CONTAINMENT AND THE

RANK OF REALIZABLE FUZZY MATRICES

Theorem 2.1 Assume that Bel(;, then there exists rank P(B)

of B.
Proof Suppose that B is separately divided into n pileces

by row and co;umn both like this :

)

T
1’ LI ) ,Bn)T=(B1, * 900 ’B

B=(B n

If row vectors Bi y oo ,Bi constitute a minimum generating
, 1 t 4

basis of R(B), where 19 eeepiy 1, cevyn and which are
not the same, then Pr(B)=t. Because B is a realizable fuzzy

matrix, then B=BT. Thus, BE y eoe ,B? form a minimum generat-

1 tt
ing basis of C(B). Thereby P_(B)=t. It follows that P.(B)=P_(B)
and there exists rank P(B) of B and P(B)-=t.
Theorem 2.2 Assume that B=(bij)eﬂlR, then r{B)=1 if any

conclusion in the following is true :

1) LIFALIEL I forVi,jef1, ... ,nj
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2) A=(b11, .o ’bnn)T is a realizable fuzzy matrix of B.
3) B may be expressed as below :
B=(by, ... b))% (b, ... o)
4) PS(B)=P(B)=1
Proof (circulating proof). Let r(B)=1, then exists a

fuzzy vector A=(a1, .+« ya ) making

(
a, 8187 218 ... a5 a
a 8, @, «.. a, a
. 2 n
BzA'AT‘: : (a1, . @ ,an)— 2. 1 2. 2 .
®n a a a .a a .a
L n 1 n 2 °*" “n n |

It is evident that elements in the main diagonal of B all
take the form of biJ.:ai/\ai (1£i<n). Thus, for all 1,3 (1#41, j<n),
we have
bij=aiAaj=(aiAai)A(aJ.AaJ.)=bii/\bjj. (2.1)
And so the result 1) follows.

Suppose now that bij=bifxbjj’ for all i,jef1, ... ,n}, then

( 1 ~ |
%14 PPIEE Pin Lo L Dy ?22 cer Dy %
B | P21 P2z +er By _| P22 P11 Pop By eel by, b
, bn1 an e bnnJ bnn b11 b b
. L nn 22 b b
*** “nn nn |
T
=(b,, ... L o) . (2.2)

Tt expresses A=(b11, eee ,b )T is a realizable matrix of B.

nn

If let bi=bii (i=1, ... ,n) then we have
T
B=(bﬁ, sev 5b) -(b1, e+e 4b) (2.3)
And so the result 3) follows. From the formula (2.2) it follows

that P_(3)=P(B)a1 . (2.4)
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On the contrary, from (2.4) we may back infer out the conclu-
sions (2.3), (2.2) and (2.1) in sequence. Whereas from every
one of preceding conclusions it follows that r(B)=1. |

Theorem 2.3 Suppose that BE/HR and r(B)=m, then B may be
expressed the sum of m cross products.

Proof Let A=(aij)nXm be a realizable fuzzy matrix of B,

then B=A-AT and form formula

Y

7 y 7
k2181k 21k k21R1k Bk o x21%1k ®nk
7 T ¥
AT | k=182 Pk k=1%2k Fok v k=1%2k Cnk
m @ m
[ k¥1%nk 21k kL1%nk 22k *** k¥1®nk Pnk|
)
2118917 849829 - 311an11 29021 #n%2m *° #n®nm
8218419 84839 e+ 854844 2o 1m 220%2m *°° %2nnn
= Y . Y + o0 0¥ Y Y .
L?n1a11 8n13821 - n18y 221 2no®om *C Znn®nm
\ .
a11 : a1m
= ao '(811, ceeo o ,an,‘) + eee + . '(a1m, LI ’anm)
n1j ®nm

It follows that B may be expressed the sum of m cross products.
Since PS(B) is the minimum number of cross products, the sum
of which is just B. Thus we have :

Inference 2.1 Suppose that fuzzy matrix Be /| PS(B)ér(B)

R*
if the schein rank of B is PS(B).

Theorem 2.4 Assume that B GJMR.and the containment of B is
r(B), then r(B) is a minimum number of realizable matrices

whose containments are all one and the sum of which is Jjust B.
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Proof From the proof for the theorem 2.3, it follows that
the B was expressed as the sum of r(B) realizable fuzzy
matrices whose containment is all one. Thereinafter, we shall
prove that the number t r(B) if the B expressed as the sum
of t realizable fuzzy matrices whose containment is all one.

In fact, suppose that the B may be expressed as the sum of
t realizable fuzzy matrices whose containment is all one.

Thus we may let

€11 °1t]i
B= C. '(C,‘;‘, LR I ,Cn,‘) + eee + C: } (C1t’ o s 'cnt)
n1 ntJ

Hence, it is easy to work out.

N

41 Sq2 o+ Cqt] €414 C21 *** Cpq
c C * o 0 C-._‘_ C C * & @ C

s | S21 22 2t| |12 22 n2| _ ool
Lcn1 cn2 e cnt L°1t °2t e Cnt

where C=(Cij)n t° It follows that the matrix C is namely a
realizable fuzzy matrix of B. In accordance with the defini-

tion of r(B), we may know that unequal t r(B) holds true.

REFERENCES
{1 Wang Hongxu, HeAZhongxiong, Solving process of the rank of
fuzzy matrix, Fuzzy mathematics, 4(1984), 52—57

2 Liu Wangtsin, The problem about realizability of fuzzy sym-

metrical matrix, Fuzzy mathematics, 1(1982), 69—76



