FUZZY NUMBER-VALUED FUZZY-INTEGRAL OF FUZZY NUMBER-VALUED FUNCTION ON FUZZY SET

ZHANG GUO-LI

Department of Basic Sciences, North China Institute of Electric Power, Baoding, Hebei, China

ABSTRACT

The concepts of fuzzy number-valued function and fuzzy number-valued fuzzy integral of fuzzy number-valued function on fuzzy set are introduced and some elementary properties of theirs are given.

1. Introduction

Wang[1] introduced the concepts of the autocontinuity of set function and the fuzzy integral, Wang's integral is real-valued fuzzy integral of real-valued function with respect to the fuzzy measure. Wang and Zhang[2] introduced fuzzy number-valued fuzzy integral of real-valued function on fuzzy set and obtained a series of interesting results simlar to results[1].

In this paper, we introduce the concept of fuzzy numbervalued fuzzy integral of fuzzy number-valued function on fuzzy set, and give some elementary properties of this type of fuzzy integral.

This paper is a development of [2]. All concepts and signs not defined in this paper may be found in [1,2]. Throughout this paper, let X be a nonempty set, ß be a g-algebra of subsets of X, R be the set of all real numbers.

2. Basic definitions

Definition 2.1. Let $F = \{\tilde{a}; \tilde{a}: \mathbb{R} \rightarrow [0,1]\}$, a fuzzy number is a $\tilde{a} \in F$ with the properties:

(FN1) \overline{a} is normal, i.e., there exists $x \in \mathbb{R}$ such that $\overline{a}(x)=1$,

(FN2) Whenever $\lambda \in (0,1]$, then $a_{\lambda} = \{x; \tilde{a}(x) \ge \lambda\}$ is a closed interval, denoted by $[a_{\lambda}^{-}, a_{\lambda}^{+}]$.

Let F* be a set of all fuzzy numbers.

By decompsition theorem of fuzzy set

 $\widetilde{a} = \bigcup_{\lambda \in [0,1]} \lambda \{a_{\lambda}^{-}, a_{\lambda}^{+}\},$

for every ã€F*.

If we define a(x)=1 iff x=a;

=0 iff $x\neq a$,

for every $a \in \mathbb{R}$, then $a \in \mathbb{F}^*$.

Definition 2.2. Let $\tilde{a}, \tilde{b} \in F^*$, we say that $\tilde{a} \leq \tilde{b}$, if for every $\lambda \in (0, 1]$, $a_{\lambda}^- \leq b_{\lambda}^-$ and $a_{\lambda}^+ \leq b_{\lambda}^+$.

Let $F_{+}^{*}=\{\bar{a}; \tilde{a} \geq 0, \tilde{a} \in F^{*}\}.$

Definition 2.3. Let $\tilde{a}, \tilde{b} \in F^*$, we call that $\tilde{c} = \tilde{a} \vee \tilde{b}$ (resp. $\tilde{c} = \tilde{a} \wedge \tilde{b}$), if for every $\lambda \in (0, 1]$, $c_{\lambda}^{-} = a_{\lambda}^{-} \vee b_{\lambda}^{-}$ and $c_{\lambda}^{+} = a_{\lambda}^{+} \vee b_{\lambda}^{+}$ (resp. $c_{\lambda}^{-} = a_{\lambda}^{-} \wedge b_{\lambda}^{-}$ and $c_{\lambda}^{+} = a_{\lambda}^{+} \wedge b_{\lambda}^{+}$).

Definition 2.4. A nonnegative fuzzy number-valued function is a mapping $f:X \to F_+^*$ with the properties: for every $x \in X$, there exists unique $\widetilde{y} \in F_+^*$ such that $f(x) = \widetilde{y}$.

Definition 2.5. Let f,g be fuzzy number-valued function, we define:

- (1) $(f \lor g)(x)=f(x) \lor g(x);$
- (2) $(f \wedge g)(x)=f(x) \wedge g(x)$.

Obviously both $f \lor g$ and $f \land g$ are fuzzy number-valued function.

Proposition 2.1. Let f be nonnegative fuzzy number-valued function, then for every $\lambda \in (0, 1]$, both $f_{\lambda}^{-}(x) = (f(x))_{\lambda}^{-}$ and $f_{\lambda}^{+}(x) = (f(x))_{\lambda}^{+}$ are nonnegative real functions and

 $f(x) = \bigcup_{\lambda \in [G_1]} \lambda [f_{\lambda}^-(x), f_{\lambda}^+(x)].$

Definition 2.6. Let f,g be fuzzy number-valued function, we say that $f \leq g$ iff $f(x) \leq g(x)$ for every $x \in X$.

Theorem 2.1. Let f,g be fuzzy number-valued function, then $f \leq g$ if and only if $f_{\lambda} \leq g_{\lambda}$ and $f_{\lambda}^{+} \leq g_{\lambda}^{+}$ for every $\lambda \in \{0, 1\}$. Proof. The conclusion is from definition 2.2, 2.3, 2.5 and 2.6.

Definition 2.7.A nonnegative fuzzy number-valued function $f:X \to F_+^*$ is called fuzzy measurable, iff for every $\lambda \in (0, 1]$

⋈€R

$$F_{\lambda,\alpha}^{-} = \{x; f_{\lambda}^{-}(x) \ge \alpha\} \in \beta,$$

$$F_{\lambda,\alpha}^{+} = \{x; f_{\lambda}^{+}(x) \ge \alpha\} \in \beta.$$

3. Fuzzy number-valued fuzzy integral of fuzzy number-valued function on fuzzy set

Let $A=\{\widetilde{A}: \widetilde{A}: X \longrightarrow \{0,1\} \text{ and } A_{\lambda} \in \mathcal{B} \text{ for every } \lambda \in \{0,1\}\}$, M* be the set of all nonnegative fuzzy number-valued measurable function.

Throughout this section, let $f,g\in M^*$, $\widetilde{A},\widetilde{B}\in A$. Definition 3.1 Let $f\in M^*$, $\widetilde{A}\in A$. The fuzzy number-valued fuzzy integral of fuzzy number-valued function on fuzzy set is defined by

$$\int_{\widetilde{A}} f d\mu = \bigcup_{\lambda \in [0,1]} \left[\int_{A_1} f_{\lambda}^{-} d\mu, \int_{A_{\lambda}} f_{\lambda}^{+} d\mu \right]$$

where

$$\int_{\mathbb{A}_1} f_{\lambda}^- d\mu = \sup_{\alpha \in [0,1]} \alpha \wedge \mu \left(\mathbb{A}_1 \cap \{x; f_{\lambda}^-(x) \ge \alpha \} \right),$$

$$\int_{\mathbb{A}_{\lambda}} f_{\lambda}^{+} d\mu = \sup_{\alpha \in [0,1]} \alpha \wedge \mu(\mathbb{A}_{\lambda} \cap \{x; f_{\lambda}^{+}(x) \geq \alpha\}).$$

Proposition 3.1. If f is nonnegative real-valued measurable function, then

$$\int_{\widetilde{A}} f d\mu = (F) \int_{\widetilde{A}} f d\mu$$
,

where

$$(F)_{\widetilde{A}}f d\mu = \bigcup_{\lambda \in [0,1]} \lambda \left[\int_{A_1} f d\mu, \int_{A_{\lambda}} f d\mu \right]$$

is the integral defined in [2]. Proposition 3.2. If $f_1 \leq f_2$, then

$$\int_{\widetilde{A}} f_1 d\mu \leq \int_{\widetilde{A}} f_2 d\mu$$
.

Proposition 3.3. If ASB, then

 $\int_{\widetilde{A}} f d\mu \leq \int_{\widetilde{B}} f d\mu$.

Proposition 3.4. $\int_{\widetilde{A}} (f \vee g) d\mu \ge \int_{\widetilde{A}} f d\mu \vee \int_{\widetilde{A}} g d\mu$.

Proposition 3.5. $\int_{\widetilde{A}} (f \wedge g) d\mu \leq \int_{\widetilde{A}} f d\mu \wedge \int_{\widetilde{A}} g d\mu$.

Proposition 3.6. $\int_{\widetilde{A}} \bigcup_{\widetilde{B}} f d\mu \ge \int_{\widetilde{A}} f d\mu \bigvee \int_{\widetilde{B}} f d\mu$.

Proposition 3.7. ∫AOBf dµ ≤ ∫Af dµ ∧ (Af du.

Proposition 3.8. If $f(x)=\tilde{a}\in F_{+}^{*}$ for every $x\in X$ and $f\in M_{+}^{*}$, then

 $\int_{\widetilde{A}} \widetilde{a} d\mu \leq \widetilde{a} \wedge \mu(\mathring{A}),$

 $\int_{\widetilde{A}} \widetilde{a} d\mu \geqslant \widetilde{a} \wedge \mu(A_i),$

where $\hat{A}=\{x; \overline{A}(x)>0\}.$

Theorem 3.1. Whenever $\widetilde{A}(x) = \widetilde{B}(x)$ a.e., $\int_{\widetilde{A}} f \, d\mu = \int_{\widetilde{A}} g \, d\mu$ holds, if and only if μ is null-additive [1].

Theorem 3.2. Whenever f=g a.e., $\int_{\widetilde{A}} f d\mu = \int_{\widetilde{A}} g d\mu$ holds, if and only if μ is null-additive.

Theorem 3.3. Let $\hat{A}=\{x; \tilde{A}(x)>0\}$, then

$$\int_{\widetilde{A}} f d\mu = 0$$

if and only if

$$\mu(\{f_{\lambda}^{+}>0\} \cap \mathring{A})=0.$$

Acknowledgment

The author would like to express his grateful thanks to Professor Zhang Guang-Quan for valuable help.

References

- 1 Wang Zhenyuan, The autocontituty of set function and the fuzzy integral, J.Math. Anal. Appl. 99(1984) 195-218.
- 2 Wang Zhenyuan and Zhang Guoli, Fuzzy integral on fuzzy set, BUSEFAL 36(1988) 30-38.