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In this paper we Introduce some spaces of seguences of fuzzy
subsets on s—disensional Euclidean space which are called F-
numbers. Me discuss spaces of bounded seguences, speces of
convergent seguences, I, ~spaces of seguences and spaces of
all sequences, of F-numbers and show that they are all comp—
lete metric space.
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Let R*denote m—dimensional Euclidean space. A and B be two nonempty bounded

"0 subsets of R*. The distance between A and B is defined by Hausdorff metric

dy (A.B)= ﬂax[sug inf??a—b] . sup inf ‘'a-bi']
a€l b€éB : béB a¢r “

wWhere !/*i| denotes the usual euclidean norm in R".

Leoma 1. (see [1] theorem 2.1)
Let Q(R*) denote the set of all nonempty, compact subsets of R™.
Then (Q(R").dy) is a complete metric space.

- * Definjtion 1.
- A fuzzy subset u: R*—>[0.1] with the following properties:
(a) {x€R" ! u(x)>r) is compact for each r>Q.
(b) {xeR" | u(x)=1} is nonempty.
is called a F-number.

we denote the set of all F-numbers by F*,

kt i !!l. Ei g! 2 -
A sequence X={Xp} of F-numbers is a function X from the set N of all
positive integers into F* . The F-number X, denotes the value of

the function at née N.
Define a map d: F*X F*> R by
d(u.v)= Sup du (La(u) \Lp(v))
. r>0

Where d, is the Hausdorff matric and we denote by Lp(w)={xiw(x)>r} for w€ F~"

Lemma 2. (see [1] theorem 4.1)

(F*.d) is a complete metric space.
We now introduce some spaces of sequences of F-numbers. We have

b ={x={xn> ! Sup d(Xn,0)<co}



c =={x ={X,} | there exists Y¢F* s.t. d(Xn.Y)—>O}
S R d(x,,.o>—>o}
=={X=(Xn} : Zn[d(Xn.O)]p(co} (1¢{p<co)

and denote the set of all sequences of F-numbers by s

We have the following results.
Theorea 1.
b is a complete metric space with the metric f defined by
£f(X.Y)= Sgp d(Xp.Yp)

where X={X,} and Y={Y,} are sequences of F-numbers which are in b.

Proof . It is straightforward to see that f is a metric on b. To show
that b is complete in this metric, let (X!} be a Cauchy sequence in b.
Then for each fixed n. {X‘} is a Cauchy sequence in F~. But F* is complete
with the metric d. there exists X, in F* such that L1m1Y1 =Xy, for every n.
Put X={X,,}. we shall show that Limj ;Xi=X and X€b . Since (X1} is a
Cauchy sequence in b, given >0 there exists k£ N such that for i.j>k and

every n& N L
d(X}.Xg)<e

Taking the limit as j—> co. we get d(Xi.X)<e
Therefore £(X1.X)= Sup d(X}.Xp)<e i.e. LinmjXi=x .
From £(X,00<E(X.XD)-£(X1.0) we obtain Sup d(X,.0)=£(X.0)<00 .So X={Xp}€Db.

The proof is completed.

Theorem 2.
c is a complete metric space with the metric f defined by
£(X.Y)= Sgp d(Xy,Yy)

where X={Xp} and Y={Y,} are sequences of F-numbers which are in c.

Proof . It is clear that (c.f) is a metric space. To prove the
completeness of c. let {X!} be a Cauchy sequence in c. Repeating the
proof of the theorem 1. we know that there exists X={Xp} such that

LimiXi=X. We now show that X€c.
Given ¢>0. for each fixed n€N and enough large i

d(X§.Xp)<e

Since {Xi}€ c. for each fixed i, there exists Xi € F* such that for
enough large n

d(X4 . X3)<e
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Since (X1} is a Cauchy sequence in c. for enough large i.J
d(Xi Xd)<e
Hence

d(xi XJ<d(xi Xdr-d(xi x3)+d(xX{ XxJ)<3e

Thus (Xé} is a Cauchy sequence in F* . By the completeness of [ el
we know that there exists Xq€F* such that for enough large i

d(X§ Xg)<e
Therefore, for enough large n and fixed i
d(Xy, Xo)<d(Xi Xp)-d(Xi XL)-d(X} X5)<3e

So X={Xp} is a convergent sequence and this proves the completeness of c,

Thecrem 3.
co is a complete metric space with the metric f defined in the above theorems.

Proof. Be similar to the proof of theoreom 2.

Theorea 4.
lp is a complete metric space with the metric h defined by

heX, 1 =S a4 Xy Y 1°)P

Where X={X,} and Y={Y,} are sequences of F-numbers which are in 1

Proof. CObviously h(X.Y)>0. h(X.Y)=0&>X=Y and h(X,Y)=h(Y.X).
The triangle inequality follows from Minkowski inequality and corresponding
triangle inequaiity for d. Hence,‘(lp,h) is a metric space.

To show the completeness of lp . let (X1} be a Cauchy sequence in lp.
Then, for every fixed n, {Xi} is a Cauchy sequence in F*. Since (F*.d) is
complete. we have LimjXi=X, for each n. Put X={Xp} . we now prove LimjXi=X
and X €1, ,

Since {X1) is a Cauchy sequence in lp given ¢>0
there exists an integer M such that
for i.j>M

co i vijyiP
200y ldxg v

Hence. for every integer k

k - p . k . . P
2 LA X 1= Lin Sk taod xrPee
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Therefore
i yyiP co i P 1; k i P
[h(XD X)1P= 3 2 1d(X} X)) Lix‘n 2_n=114(X4 )
= Lim Lim E k td(xi x1P¢s
k J n=1

i.e. LimXl= X . From h(X 0)¢h(X XD)+h(Xl 0)<co  we get X€I;
The proof is completed.

Theorea 5. ,
s is a complete metric space with the metric g defined by
1 d(X,, Yg?
X =p o

1+ d(X, Yp)

Where X={X,,} and Y=(Y,} are arbitrary sequences of F-numbers.

Proof. Cbviously g(X.Y)20. g(X.Y)=0&>X=Y and g(X.Y)=g(Y.X).
The triangle inequality g(X,Y)<g(X,Z2)+g(Z,Y) follows from the function IE—

-t
is monotonically increasing and corresponding inequality for d. Hence.
s is a metric space with the metric g. To prove the completeness of s.
let {X!} be a Cauchy sequence in s. Then given £ >0. there exists an integer k
such that fot 1,j>k

co 1 d(xi X
2 =1 2n Py ©
n= 1+ dXd xd

It implies that (X} is a Cauchy sequence in F*. By the completeness of F*,
there exists X, in F* such that L{m Xi=X, for each n. Put X={X,)} we now

i i: 3 3 <o ..._l_
prove that L1miX X . Taking an integer m such that 2:n=m 2n<£
For each n=1.2.....m~1 there exists an integer M such that for i>M

d(X§ Xp)<E .

Then d(xi X))
—m1l 1 n_“n m—1 1 £ (¢
Z _n=1 2N 1 - d(X,i. Xp) < Zn=l 2n i~ ~

Therefore, for i>M

d(X} Xp)
1+ dxi xp)

(E-2=2¢

i _— e—m 1 — ©0 \ 1
g(XL X &\ Zn=m) 28
This proves the completeness of s.
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