About D.G. Schwartz's likelihood logic

Didier DUBOIS - Henri PRADE

Institut de Recherche en Informatique de Toulouse Université Paul Sabatier, 118 route de Narbonne 31062 TOULOUSE Cedex – FRANCE

It is well-known (e.g. Dubois and Prade, 1988) that a measure of uncertainty defined on a Boolean algebra and taking its values in the interval [0,1] cannot be fully compositional with respect to all the logical connectives, just because we cannot equip [0,1] with a structure of Boolean algebra. Indeed probabilities are only compositional with respect to negation, i.e. $P(A) = 1 - P(\overline{A})$ (since $P(A \cup B) = P(A) + P(B)$ only when $A \cap B = \emptyset$, and $P(A \cap B) = P(A) \cdot P(B)$ requires the supplementary assumption of stochastic independence). Measures of possibility are only compositional with respect to disjunction, i.e. $\Pi(A \cup B) = \max(\Pi(A),\Pi(B))$ (and $\Pi(A \cap B) = \min(\Pi(A),\Pi(B))$ only if A and B are logically independent or if A = B), and necessity measures which are such that $N(A) = 1 - \Pi(\overline{A})$, are only compositional with respect to conjunction, i.e. $N(A \cap B) = \min(N(A),N(B))$.

Recently Schwartz (1992) has proposed a logic of likelihood governed by the following laws

$$\forall A \subseteq \Omega, \ \ell(\overline{A}) = 1 - \ell(A);$$

$$\forall A \subseteq \Omega, \ \forall B \subseteq \Omega, \ \ell(A \cup B) = \begin{cases} 1 \text{ if } A \cup B = \Omega \\ \max(\ell(A), \ell(B)) \text{ if not }; \end{cases}$$

$$\ell(A \cap B) = \begin{cases} 0 \text{ if } A \cap B = \emptyset \\ \min(\ell(A), \ell(B)) \text{ if not.} \end{cases}$$

As it can be seen such a measure of likelihood ℓ is as compositional as possible. Note that these likelihood set-functions are self-dual. Moreover only operations with a qualitative flavor are used to combine the likelihood degrees. Only a totally ordered set equipped with an order reversing involution is required as a likelihood scale. In the following we investigate what is the power of expressivity of these measures of likelihood, in the finite case.

Let $\Omega=\{\omega_1,\ldots,\omega_n\}$ be the finite set of atoms of the Boolean algebra 2^Ω . Let $\ell(\{\omega_i\})=\ell_i\in[0,1]$. We have

$$\forall i, \ell_i = 1 - \ell(\Omega - \{\omega_i\}) = 1 - \max_{j \neq i} \ell_j = \min_{j \neq i} (1 - \ell_j).$$

If $\exists i, \ell_i = 1$ then $\ell(\Omega - \{\omega_i\}) = 0$ and then $\forall j \neq i, \ell_j = 0$. Thus it corresponds to the deterministic case.

Let us suppose that $\exists i, \ell_i = \alpha \in (0,1)$. Then

$$\forall \ j \neq i, \ \ell_j \leq \max_{k \neq i} \ell_k = \ell(\Omega - \{\omega_i\}) = 1 - \ell_i = 1 - \alpha.$$

Let us suppose that $\alpha = \ell_1 \ge \ell_2 \ge ... \ge \ell_n$. Then

$$\ell_2=1-\ell(\Omega-\{\omega_2\})=1-\max_{j\neq 2}\ell_j=1-\ell_1=1-\alpha.$$

Since ℓ_1 is the maximal level, it follows that $\alpha \ge 1/2$. Similarly we have :

$$\begin{aligned} &\ell_3 = 1 - \max(\ell_1, \ell_2, \ell_4, ..., \ell_n) = 1 - \alpha \\ &\vdots \\ &\ell_n = 1 - \alpha. \end{aligned}$$

Thus if $\ell_1 < 1$, we can only have

$$1>\ell_1\geq\ell_2=\ell_3=\ldots=\ell_n>0.$$

So we can only describe a *pseudo-deterministic* situation where $\exists i, \ell_i = \alpha \ge 1/2$, and $\forall j \ne i$, $\ell_i = 1 - \alpha \le 1/2$. In particular, total uncertainty is described by $\forall i, \ell_i = \alpha = 1 - \alpha = 1/2$.

In this calculus, we only have four certainty levels corresponding respectively to the complete certainty of truth (1), the likelihood of truth (α), the unlikelihood of truth ($1-\alpha$), and the complete certainty of falsity. Especially this representation of uncertainty does not really need the unit interval since only a 4-element totally ordered set $\{0, UL, L, 1\}$ is needed.

Thus this proposal corresponds to the most elementary logic of likelihood which can be imagined: there exists *one* alternative which, without being necessarily completely certain, appears to be more likely than the others which are considered as having a smaller, undifferentiated level of likelihood.

It is interesting to see whether likelihood measures induce a comparative probability ordering on events. Namely a comparative probability ordering \geq is such that \geq is complete and transitive, $A \geq \emptyset$, $\forall A \subseteq \Omega$, and \geq satisfies the additivity axiom (Fine, 1973):

$$\forall A, A \cap (B \cup C) = \emptyset, B > C \Leftrightarrow A \cup B > A \cup C \tag{1}$$

where A > B means $A \ge B$ and not $(B \ge A)$. Any function ℓ classifies the events in Ω into 4 classes of level 1, L, UL and 0 respectively. Namely $\exists \omega_0$ such that the class of level L is $\{A \ne \Omega, \omega_0 \in A\}$, the class of level UL is $\{A \ne \emptyset, \omega_0 \notin A\}$. The class of level 1 is $\{\Omega\}$ and the one of level 0 is $\{\emptyset\}$. Particularly we have, for $A \ne B$,

$$A > B$$
 if and only if $A = \Omega$ or $B = \emptyset$ or $(\omega_0 \in A \text{ and } \omega_0 \notin B)$.

Let us consider whether (1) holds:

- -) if $B = \Omega$ then $A = \emptyset$ and (1) is trivial. From now on $A \neq \emptyset$;
- -) if $B \neq \Omega$, $C \neq \emptyset$ then assume B > C, i.e. $\omega_0 \in B$, $\omega_0 \notin C$. Since $A \cap B = \emptyset$, $\omega_0 \notin A$. Hence $\omega_0 \notin A \cup C$ and $A \cup B > A \cup C$.

Conversely assume $\Omega \neq A \cup B > A \cup C$. Clearly $A \cup C \neq \emptyset$; we have $\omega_0 \in A \cup B$, $\omega_0 \notin A \cup C$. Hence $\omega_0 \notin A$, and $\omega_0 \in B - C$. Hence B > C.

Assume now $A \cup B = \Omega > A \cup C$ then since $A \cap (B \cup C) = \emptyset$, it follows that $C \subseteq B$. If $\omega_0 \in B - C$ then $\ell(A \cup B) = 1 > \ell(A \cup C) = UL$ and $\ell(B) = L > \ell(C) = UL$. If $\omega_0 \in C$ we have $\ell(B) = \ell(C) = L$ and $\ell(A \cup B) = 1 > \ell(A \cup C) = L$. Hence (1) fails when $A \cup B = \Omega$.

-) when $C = \emptyset$ then (1) fails too, if $\omega_0 \in A$ since then $\ell(B) > \ell(C)$ but $\ell(A \cup B) = \ell(A \cup C) = L$, generally.

As a consequence the likelihood measure *almost* satisfies the axioms of a comparative probability relation. It satisfies the following reasonable relaxation of additivity:

$$\forall$$
A, B, C such that A \cup B \neq Ω , A \cap (B \cup C) = \emptyset , C \neq \emptyset
B > C \Leftrightarrow A \cup B > A \cup C.

This paper also gives an answer to the following question: how far can we go with a representation of uncertainty that tries to take advantage of truth-functionality as far as possible. It is shown here that, not only truth-functionality per se is not possible, but retaining this property as much as mathematical consistency allows it leads to a very crude, almost deterministic model of uncertainty.

References

- Dubois D., Prade H. (1988) An introduction to possibilistic and fuzzy logics. In: Non-Standard Logics for Automated Reasoning (P. Smets, E.H. Mamdani, D. Dubois, H. Prade, eds.), Academic Press, 287-326.
- Fine T.L. (1973) Theories of Probability An Examination of Foundations. Academic Press, New York.
- Schwartz D.G. (1992) A min-max semantics for fuzzy likelihood. Proc. of the 1st IEEE Inter. Conf. on Fuzzy Systems (FUZZ-IEEE'92), San Diego, CA, March 8-12, 1393-1398.