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O-THEORY AND ITS RELATION TO FUZZY SET THEORY

Milan Lehotsky, Vladimir Olej, Jan Chmiarny, Department of
Technical Cybernetics, Technical University, 031 19 Liptovsky

Mikulas, Czecho-Slovakia

Basic concepts, operators of O—-theory and its use for
representation of uncertainty in inference and reascning sys-
tems are described. In our paper the relation between des-
cription of uncertainty in Dempster—Shafer theory and O-theo-

ry on one side and in fuzzy set theory on the other side are

studied.

1. Intreduction

The available information needed for inference and rea-
soning systems 1is in general often uncertain, unprecise and
vague. Several ways exist for solving of this problem. It is
probability theory (PT) [1], peossibility theory, fuzzy set
theory (FST) (2], Dempster-Shafer theory (DST) (3] and
O-theory (Operator theory) [4-10].

O-theory is the theory of uncertainty based on DST which
renders new way for sclving uncertainty problems in inference
and reasoning systems. It is a hybrid theory between FST, PT
and DST. It was developed for representation and propagation
of often occurring nonstandard forms of uncertain information

and of information sources characterized by measurable unde-

cidability and conflict.

2. Basic concepts of O-theory
Like in DST also in O-theory a set U called a universal
set is considered and to each x€2V, where 2V is a powervset

of U, a nonnegative number m(x) called mass is assigned such
that

2 m(x) = 1 (1)
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holds. Mass is a function

m:2V-->[0,1] : (2)
and is called mass distribution. In DST the following
condition also holds m(@) = O.

Various mass distributions can be defined on the same
universal set. They will be denoted by A,B and corresponding
masses of xX€2V ma(x) and mp (x). The mass of void set m(@) can
be nonzero in contrast to DST and so conflict can be repre-
sented. )

For comparing of various sets from 24 and of mass dist-
ributions the set cardinality denoted |x‘ is used.

The dominance of set x over set x’'€2V for mass distribu-

tion A is defined as follows:
Xxex’, if mA(x)lx‘Z mh(x')‘x'! (3)
The equality of two mass distributions is defined
A = B <=> ma(x) = mp(x) for each x€gvV (4)

The dominance of mass distribution A over B defined on

the same set 2V is defined as follows:

A>B, if = moolxlz = meoolx] (5)
x€2V x€2V

The dominances are quasiorderings, ie. they are reflexi-
ve and transitive but they are not in general partial orde-
rings (in contrast to the assertions in [4-8]}) as the follo—-

wing examples show:

Example 1: Let U={a,b} and for mass distribution A ma({a})=

=ma ({b})=1/2 holds. Then ma({a})|(a)|smac¢eb)l(prl=1/2 al-
though {a}={b}.
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Example 2: let U={a,b} and for mass distributions A.,B
ma ({a})=me ({b})=1 holds. Then

= m;(x)lxl = 1 and = ma(x)|x| = 1 (6)
xXE2V XE2V

and so A2B and A<B, while A # B.

3. Operators on mass distributions

For combining uncertainty distributions from various
Bources operators are needed which to one or more uncertainty
distributions assign another distribution. In DST and in
O-theory such an operator based on Dempster rule of combina-

tion is an intersection of two distributions A.B on the same

universal set U C = A@®B defined as follows:
me () = X ma (a)mp (b) for a,b,ce2V (7)
anNb=¢

Another operator which has no counterpart in DST is a union

of two distributions A,B on C = AQ@B defined as follows:

mc(c) = Z ma (a)mp (b) for a,b,ce2v (8)
aUb=c

These operators are the counterparts of MIN and MAX used
in FST. They are both commutative and associative but they
are not distributive and idempotent. Intersection diminishes
mags of sets with more elements and inversely increases mass

of sets with few elements. Union has an inverse effect as the

following example shows.

Example 3: Let U =(a,b} and mass distributions A and B are

given as follows:
ma(@) = 0.4, ma({a))
mp (@) = 0.1, mg({a})

i
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0.2, ma({b}) 0.3, ma(U) 0.1
0.2, mp ({b}) 0.3, mp (U) 0.4
Mass distributions for wvarious operators are shown in the

following table 1.
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Table 1.
xe2v | A@QB | A@A | B@®B | A@B | A@A | B@B
7] v0.58 0.76 0.31 0.04 0.16 0.01
{a} 0.14 0.08 0.20 0.14 0.20 g.08
{b} 0.24 0.15 0.33 0.24 0.33 0.15
U 0.04 0.01 0.16 0.58 0.31 0.76

The last basic operator is a complement. The complement

E of a mass ditribution A is defined as follows:

mi (x) = ma(X) (9)
where x€2VU and x is a set-theoretical complement of x&2V. For

these operators De Morgan’'s laws and involution

T~ T~~~

A@B = A®E, A@B = A©B,

1
>=a

= A (10)

hold.

4. From mass assignments to membership functions

When we deal with the uncertain information on a univer-—
sal set U, we have several possibilities to express it. Two
of them - membership functions and mass assignments - we have
mentioned in the previous part. Now a natural question arises
- what are and what can be the relations between various ex-
pressions of uncertainty - membership functions and mass as-
signments.

Mass assignment gives more information as membership
function because membership function expresses only uncer-—
tainty concerning the single elements while mass assignment
gives the information about subsets of elements of the uni-
versal set and also about relations between various elements.
:Moreover, to each mass assigment a membership function on

a given universal set U can be uniquely assigned by the fol-



lowing way [6]:

f(x) = m(X) . (11)
xEX

The value of membership function 1in element x is also obtai-
ned by adding of the masses of all subsets containing element
x. From the condition (1) it is clear that the function f is
well defined in the sense that its values are in the closed
interval [0O,1].

A membership function can be after (11) uniquely assig-
ned to the given mass assignment. In the following we will
solve the problem how to find a mass assignment to a given

membershipr function such that (11) holds.

5. Voting model

The problem given at the end of the previous part has in
general infinite possible solutions. In practice it is impor-—
tant to find a meaningfull sclution which can be precisely
algorithmically described. One ©f these sclution 1is the so-
~called voting model described in [9]. This model can be ex-
pressed precisely as follows:

Let U={aj.az,...,an} ordered in such way that for given

membership function f
12f(as )2f(az)=...2f(an)20 (12)

heolds. Then we can construct following mass assignment on U:

m({ai,...,anl}) = f(an)
m{{ai,...,an-113}) = f(an-1)-1(an)
m({a1,...,3a}) = f(aw)-f(ak+1)
m({as }) = f(a1)-f(az)
m(Q) = 1-f(as)

and the masses of all other sets are equal to 0. It is clear
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that the function m is a mass assignment because the condi-
tions (1) and (2) hold and that the condition (11) alsc holds

such that the mass m is a given solution of our problemn.

6. Mass assignment on two-element set

In the case of the two-element universal set U it is
possible to describe all masses which can be assigned to the
given mass distribution such that (11) holds.

Let U={a,b}, f be a membership function on U such that
1zf(a)2f(b)20. Denote mo = m(@), ma = m({a}), me = m({b}),

mu = m(U). Then from (1) and (11) the following three equali-

ties must hold:

f(a) = ma + mMmu
f(b) = me + mu (13)
1 = mo + ma + my + mu

System (13) is the system of three equations with four un-
knowns which has an infinite number of solutions having the

following description:

ma = f(a) - t

me = f(b) - t (14)
mu = t

mo = 1 - f(a) - f(b) + t

where t is a parameter.

We see that the conditions (1) and (11) hold. From the condi-
tion (2) (that means that all masses are values between 0 and

1) we can simply compute that for parameter t the following

inequality holds:
max{f(a)+f(b)-1,0} £ t < min{f(a),f(b)} (15)
which can be equivalently expressed as

1(a) ® f(b) <t < f(a) A £(b) (16)
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So we can conclude that for two-element set U all masses
which can be assigned to the given membership function can be

expressed by (14) where parameter t fulfils the condition
(15) or (16).

7. Mass assignment on general finite set

In the case when the universal set has more than two
elements it is not possible to express the mass assignment in
such simple way as in the previous part because the svstem of
linear equations analogical to (13) has too many unknowns.
Instead of it we propose the following recursive description

of mass assignment for a given membership function:

et U = {ai1.,az.,...,an} and f is a given membership fun-

ction on U such that
O<f(ai1)=<f(az)=<...=<f(an)=1 (17>

holds. Then we take the sublattice of the lattice 2V which
contains all subseis containing element ai; (see figure 1 for
n=3). This lattice is isomorphic to the lattice 2VU-<ey> of
all subsets of U which do not contain the element ai;. We can

consider a function m defined on this set for which (2) holds

and instead (1)

& m(X) = f(a1) ///1 (18)
XcU-{(a1}

holds. // }
l
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Figure 1.



The problem now is to find such a function m. We can now
assign values to the subsets of U-{a:} in such way that (2)
and (18) hold. These values are now subtracted from the va-
lues of membership function f for elements az.,....,an in such
way that from each f(a;) is subtracted the sum of all m(X),
where a; €X. The new membership fuction f’ on U-{ai1} is obtai-
ned. From (17) it follows that all values f’ are nonnegative.

Now in the lattice U-{a;} all elements are rearranged to ful-

fil the inequalities
O<f’'(az)=<...<f'(an)=<1 (19)

This process will be repeated until the one-—-element set is
obtained. During this process the sum of all values m must be
controlled. If this sum exceeds one we must return to the
pPrevious lattice and change the wvalues of m (it is alwavs
possible as the voting model shows). If at the end this sum
is less than 1, the difference between 1 and this wvalue is
assigned to the void set and the definition of required mass

assigment is completed,.

8. Conclusion

O-theory can be used for design of computer circuits ba-
sed on multivalued logics and in creation of inference and
reasoning systems with uncertainty.

In this contribution mass assignments which can be con-

structed from a given membership function such that (11)
holds.
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