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Abstract In this paper, the X(p) condition to the pair of
t-conorm and t-seminorm is introduced and two monotone convergence
theorems and a uniform convergence theorem for comormed-seminormed

fuzzy integral are obtained in X(p) conditions.

1. Introduction

Suarez and Gil [1] firstly proposed the concept of conormed-
seminormed fuzzy integral which is the extensions of Sugeno fuzzy
integral and classcal Lebesgue integral(when the fuzzy measure is
probability measure). Liu[2] proved that when the t-conorm and
t-seminorm are continuous, the monotone convergence theorem to the
case that f”T f is true, and used an example to explain that the
monotone convergence theorem to the case that fn\Lf is not true in
general, even in the condition that the t-conorm and t-seminorm are
continuous. In this paper, motivatied by Yang[3], we introduce the
X(p) condition to the pair of (T’, S), where T’ is a t-conorm and
S a t-seminorm, and give many examples of (T', S) which satisfy
X(p) conditions, then, in the assumption that (T’, S) satisfies
X(p) condition, we obtain two monotone convergence theorems to

monotone convergence measurable function sequence {fn}, f“T f(resp.



f“l f) in the condition that f is the (c)control function of {fn}’
and a uniform convergence theorem to uniformly convergent
measurable function sequence {fn}’ f, — f in the condition that
inf f(x) > 0.

X €X ,
The concepts and notations not defned in this paper can be

found in [1].

2. X{(p) conditions

Definition2.1 Let T’ be a t-conorm and S a t-seminorm. If there
exists p * 1 such that V¢ € (0, 1), Vn € N:= {1, 2, ...}, V¥ a,
bC ¢ [0, 11(i =1, 2, ..., n), there holds

(2.1) i’l [S(ca,, b )] 2 cf ti: [S(a., b )]

we call (T', S) satisfies X(p) condition.

About X(p) condition, we have the following two propositions.

Proposition2.1 (T’, S) satisfies X(1) condition iff (2.1) holds
for n = 2.
Proof It is enough to prove the sufficiency.

(1) The case that n = 1

¥c € (0, 1), V a b1 € {0, 1], we have

%’ [S(ca., b )] = S(ca,, b,) = T’[S(ca,, b ), 0]
7=1 L [y { '1 A 4

T’[S(caq, b4)) S(0, 0)1]

T*[S(ca,, b,), $(c0, 0)]

-

cT’[S(a,,
A {

c T’ [S(a., b )]
{=1 ‘ N

(2) The case that n 2 2

b,), $(0, 0)] )

cT’[S(a1, b4), 0] = cS(a‘, b‘

Now we use the mathematical induction to prove the conclusion.
The conclusion for n = 2 is the assumption.
Suppose that the conclusion is true for n(2 2), we prove that

the conclusion is true for n+l.



Vce (0, 1), V a., bd ¢ [0, 1}, i =1, 2, ..., n+l, we have
n+

|

“ R
i=; [S(ca_, b, )] = T’{izi (S(ca ., b )1, S(ca ., b, )}
n
2 T’{c€£: [S(ai, bC)]’ S(cawﬂ, bwﬂ)}
* 7'{c T' [S(a_, b)), cS(a_, b, )}  (from (1))
f"l » 4 1 N+ +!
= T’{S(c g; [S(a, b&)], 1), s(c8(a,,, b, ), 1)}
2 cT’ {S( ér:\’ [S(af’ b@)]: 1), S(S(a“ﬂ, b.‘:‘)" 1)}
— ? 1\’ - b
= cT'{ :\I;_\ [s(aii bg)]; S(ar\-ﬂ’ b"\'H)} = C'L'\I‘:‘ [S(aia bi)]
Proposition2.2 (V, S) (where V:= max) satisfies X(p) condition
(p 2 1) iff (2.1) holds for n = 2.
Proof Like Proposition2.1, it is enough to prove the suffciency.

(i) The proof to the case that n = 1 is similar to the (1) of
the proof of Proposition2.1.

(i1) The case that n 2 2

We use mathematical induction to prove thebconclusion.

The conlusion for n = 2 is the assumption.

Suppose that the conclusion is true for n(2 2), we prove the

conclusion is true for n+l.

Vee (0, 1), V a . bC ¢ [0, 1}, i =1, 2, ..., ntl, we have
n+

n
.V [S(ca,, b.)] = V{ V [S(ca_, b ), S(ca_ , b_ )}
Ty 1 L Ty v A ety Nt

-

b
v{cPiX S(ay, b.), S(ca,, b,,)}
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Py P ;
V{c ‘ﬁks(ai, b{), c S(anﬂ, bnﬂ)} (from (i))

; "
c V {,X_‘S(af’ b‘\\)’ S(a’m-ﬂ’ bn+l)}
Ph""

c x's(ai, b;) E]

1

In the following, we give some example of (T’, S) which satisfy

X(p) eonditions.

" Example2.1 Note
S,(x, ¥)i= xAY,
Sy(x, ¥)i= xv,



T(x, y):= X\/‘}”

A

TG Vi sy Al (p 2 1)
By using Proposition2.1, we know that (T;, S1), (T;, S,) (T%P’ S1)
and (T;b, S,) satisfies X(1) conditions.
Note. (%’, S1) is to Suguno's fuzzy integral and (T;P’ SQ) to

classical Lebesgue integral(when the fuzzy measure is a probability

measure) .
Example2.2 For p 2 1, note
S;(x, v) = x'A v, x <1, y<1,
= xAv, else
sy(x, v) = x"y x <1, y<1
= Xy else

By using Proposition2.2, we know that (V, S;) and (V, S;) satisfies
X(p) conditions.

1
Note. The t-seminorms S? and S; are not continuous when p N 1.

3. Monotone convergence theorems for conormed-seminormed fuzzy
integral in X(p) conditions.

In this section, we give two monotone convergence theorems for
conormed-seminormed fuzzy integral in X(p) conditions when the
monotone measurable function sequence {fn} has (c)control
functions.
Definition3.1 Let {fh} be a monotone measurable function
sequence, fn;Tf(resp. f,‘¢f). We call f the (c)control function of
{fn}, if Vc € (0, 1), there exists n(c) ¢ N such that

£,(x) 2 cf(x) VxéeX
(resp. cfn(x) £ f£(x) V x ¢ X)

whenever n 2 n(c).



Theorem3.1 If (T’, S) satisfies X(p) condition and £, 7f, £ is

the (c)control function of {fh}, then

lim S;fn(x).g(.) Téx £(x).g(.)

“-»o2 y
Proof Note TS

jlf(x).g(.):= k
T3

It is clear that

lim j{f\(x).g(.) £k
Y0y

Now, we prove that
lim [ £, (x).g(.) 2 k

"> 7'5
Since f is the (c)control functionof {fn}’ then, V ¢c ¢ (0, 1),

there exists n(c) ¢ N such that
fh(x) 2 cf(x) ¥V xe X

whenever n 2 n(c).

. . . m
V fixed n 2 n(c), V simple function s = Z{quipﬁ,, 0 £ s £ f,
we have
X
Jxf0.8C) 2 (L (e)(x).800) * §¥(es)
LI T TS TS
= T:\t‘[S(COl{, g(Ad‘.)]
am
a of x: [s(<y g(Ar)] (from X(p) condition)
= o' @%(s)
TS
Therefore,
[ E.(x).g() 2 cpj £(x).g(.) = c'k
X
TS Ts
Consequently,
lim [ £,(x).g(.) * ¢’k
Lisdiadly &7 :
Since c ¢ (0, 1) is arbitary, then
lim j;fn(x).g(,) s k : 3
LET™] s

Similarly, we can prove

Theorem3. 2 If (T', S) satisfies X(p) condition and fwl f, f is

the (c)control function of {f.}, then



lim § £(x).g(.) = § £(x).2(.)

m‘)w.‘,'s -‘»'s
Note. In Theorem3.2, the condition that f is the (c)control
function of {ﬂq} can not be dropped. we can use the following
example to explain it(cf. [2]).
Example3.1 Let (T’, S):= (T21, Sq)(see section2), (X,~? , £):

= ([0, 11, (O, 1]/\34, m){(where m is Lebesgue measure on Borel

field [0, 11 N§',

n* 1/n, Vneg N, f:= 0, we have, V n ¢ N,
jxf.n(x).g(.) =1

T's
but

5f(x).g(.) = 0
,5x

amd then

tin [ £,(0).80) #  £(x).8(.)
Jdad & T's
In this paper, the following problem can not be solved: can

the condition that f is the (c)control function of {f,} be dropped

in Theorem3.1.

4. Uniform convergence theorem for conormed-seminormed fuzzy
integral in X(p) conditions

The main result of this section is

Theorem4 .1 If (T’, S) satisfies X(p) condition and the

measureable function sequence {fn} converges uniformly to f,

inf f(x):= I > 0, then

XxeX
lim [ £,(x).8(.) = § £(x).g(.)
Lemma4.1 In the assumptions of Theorem4.1, we have
£, 7f = 1im { £,.x).8(.) = [, £(x).(.)
“"’of's T
Proof Since f,lff,and f converges to f uniformly, then,

Vceé€ (0, 1), there exists n(c) € N such that

(4.1) f(x) - £ (x) £ (1 - ¢c)1 Vxe X



as n 2 n(c).
From (4.1), we know that

(4.2) fh(x) 2 f(x) - (1 -¢)I 21 - (1 -2¢)I ==¢cI Vxe X
as n 2 nf(c).
Therefore, V ¢ ¢ (0, 1), from (4.1) and (4.2), we have
fn(x) - cf(x) = (1—c)fn(x) - c(f(x) - fn(x))
2 (1-c)cI - ¢c(1l-¢)I = 0
i. e.
(4.3) f"(x) 2 cf(x) ? X ¢ X
as n = n(c).
(4.3) yields that f is the (c)control function of {f, } and
the conclusion follows from Theorem3.1l. []
Lemmad .2 In the_assumptiona of Theoremd4.l, we have
£,4f = lin f&f“(x).g(.) =T£xf<x>-s<-)
Proof Since fh¢ f and f, converges to f uniformly, then, V c
e (0, 1), there exists n{c) € N such that
(4.4) f“(x) - f(x) € [(1-c)/c]I Vxx ¢X
as n 2 n(c).
Therefore,
f(x) - cf‘(x) = (1l-c)f(x) - c(fn(x) - f(x))
2 (1-¢c)I - cl(1-c)/clI =0 Vxe¢X
i. e,
(4.5) f(x) 2 cf (x) VxxeX
as n a n(c).
(4.5) tells us that f is the (c)control function of {f,} and
the conclusion follows from Theorem3.2. .

Proof of Theorem4.1

¥V n e N, note



h (x):= V fK(x) Vxe X
n Kan
h,‘(x):= A fk(x) Vxx eX
= Kyn - -
we can easily obtain that ¥ n ¢ N, bn £ £ h,, bn’yf’ hn$ f,

and {h }, {B‘} converge to f uniformly.

From Lemmad4.1 and 4.2, we obtain

(4.6) lin {h,(x).g(.) = | £(x).g(.)
h-'?POT:S TJS

and

(4.7)  lim [R.(x).g(.) = [ £(x).g(.)
mree s T's

From h, = f_ £h,, YVne N, we have, V n ¢ N,

(4.8) )b, (x).g() £ [ fa0x).8() £ [ h(x).8(0)
TS 7's T's
(4.6), (4.7) and (4.8) yield that
lin { £ (x).g(.) = [ f(x).g(.) 1
NI gig T's
Note. The condition trhat inf f(x) > 0 can not be dropped in
Xex

Theorem4.1. we can use Example3.l to explain it.
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