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Abstract

Selected problems on modelling a fuzzy controller by means of
multilayer feedforward neural networks have been analysed in
this paper. Based on simulation results, the performance of two
networks with different structures of input layers have been shown.

The advantages and disadvantages of the above presented modelling

have been pointed out.
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1. Introduction

Just as in [4], we will consider here a fuzzy controller
as a system that processes fuzzy information. Let us assume that
our fuzzy controller contains a collection of fuzzy control rules

of the form

Rr: If Error = Aj and Change in Error = Bk

then Control Action = Cp (1.1)

for 1 < r < K.
Aj’ Bk' Cp are linguistic values (fuzzy sets) for variables Error,
Change in Error and Control Action defined in universes of
discourse X, ¥, and 3, respectively.
Let as point out here an explicite connective ’‘and’ between variables
Error and Change in Error and an implicit sentence connective ’also’
which links all the rules into a knowledge base.

Because our further considerations are based on a discretization
of the rules, let us choose the same as in [4], discretized intervals
[a1,b1], [a2,b2] and [a3,b3] for supports of all the Aj, By and Cp

in ¥, ¥ and %, respectively. So we have

1. Xi a1+i (b1— a1)/N1 ( 0<i<N1)

for a positive integer Nj

2. yi=a2+i (b2" az)/NZ ( 0<i<N2)

for a positive integer Nj

3. zy =az+ i (bg az)/Nz (0 <i <Nz

for a positive integer Nz

A fuzzy control rule is usually implemented by a fuzzy

implication (a fuzzy relation in X x Y x 2):

Rp = (Aj and By) --> Cp (1.2)



where (A, and Bk) may be interpreted as a fuzzy set A;jx B

J
in ¥ x Y.

k

Given input information: A’ (error) and B’ (change in error),
the control action C’ can be deduced employing the compositional .
rule of inference, the definitions of fuzzy implication and
connectives ‘and’and ’‘also’. Even if we choose a particular
compositional rule of inference, fuzzy implication and bdthv
connectives ‘and’ and ‘also’, the inference process can still
be realized in different ways. Namély, if we cdnsidér inpuﬁ ‘
information (efror and change in error) as vectors, we shali write

the compositional rule of inference in the form:
C’ = B’c (A’°R) (1.3)

where R is the global relation obtained by connection of all
rules ( e.g. R = L,,R
Alternatively we can use the cartesian product matrix as input

‘<

information and apply the following formula: .
C’ = (B’X A’) e R (1.4)

Taking into account for example sup-min as composition
operations, min for implication, min for ‘and’ and
max for ’‘also’ connectives, we get the same:inference result
from both formulas (1.3) and (1.4). A different selection of
the operations may produce different inférence resulté.

The motivation for this paper is to show that the above
mentioned fwo approaches to the inference process in a fuzzy
controller lead to the constrﬁbtion of two versions of

multilayer feedforward neural networks which can be trained

to model such a fuzzy controller.



2. The structure of two versions of neural networks

modelling a fuzzy controller

Considering the>discretization presented in the first
section and two versions of input information for a fuzzy
controller we will construct now two respective versions
of multilayer feedforward neural networks. In order to compare
the performance of the networks we will use the same structure
of all layers with the exception of the input layers. The structure
of the input layer is considered to be linear for the vector
version and rectangular for the matrix version of neural network (Fig1).

Let us now then consider each version separately.

Vector version

According to formula (1.3) and the discretization from the
first section, this version will have m, = N1 + N2 + 2 input
neurons. The number of output neurons is given by n = N3 + 1 .
Taking into account the number of hidden layers as well as the
numbers of neurons in them considered as h1, h2,... , we can

annotate the structure of the whole network as

m1-l'l1-h2_-..“n

The training input-output pairs (Vf’tr) are of the form
v-f, = (Aj(xo) RN IAJ(XN1) 'Bk(yo) R 'Bk(yﬂz))

tr = (Cp(zo) PR "Cp(zNB))

for 1 < r < K.
The above given training pairs represent knowledge contained

in fuzzy rules of a fuzzy controller.



Matrix version

According to formula (1.4) and using the same discretization as in
the vector version, a matrix version will have m, = (N1 + 1)(N2 + 1)
input neurons. Assuming the same number of output neurons i.e.
n = N3 + 1 and taking into account the number of hidden‘layers as
well as the numbers of neurons in them considered as h,, h2,... , we

can also annotate the structure of the whole network as
m2-h1—h2_c.-—n

The training input-output pairs (qr,tr) are of the form

A4(x5) ka(Yo) R 'AJ(X-N1) jBk(yo)
9y = . .

Aj(xo) ABk(yNz) reeesA .j(xN.‘) ABk(YNz)
t. = (Fp(zo),---lcp(ZNB))

for 1 < r < K (symbol ~ stands for min operation).
Analogically as in the previous version, the pairs (qr’tr)
represent knowledge contained in the fuzzy rules of a fuzzy

controller.

3. Simulation results

We now apply our two versions of multilayer feedforward
neural networks to model a fuzzy controller which successfully
. controls a return fine hopper level at the sintering plant [2,4].
The fuzzy controller is specified by the rule table presented
in Table 1 and the definition of the respective linguistic values

is given in Fig. 2.



Table 1

Rule R1 R2 R3 R4 R5 R6 R7 R8 R9

Error vl sl sl me me me sh sh vh

Change in

Error sn sn sp ne ze po sn sp sp
Control
Action ne ne sn sn ze sp sp po po

The following abbreviations have been used in Table 1
vl - very low, sl - small low, me - medium, sh - small high,
vh - very high, ne - negative, sn - small negative, ze - zero,

sp - small positive, po - positive.

Just as in [1] and [4] we have chosen here 29 numbers xi in
[0.20,0.90] for Error and 17 numbers Yy in [-4,4] for Change

in Error. The Xy and yinumbers are equally spaced at their
respective intervals. This means that we have for the vector version
m, = 46 input neurons and for the matrix version m, = 493 input
neurons. For the Control Action, 25 numbers z4 in [-3,3]

have been taken. It means that the output layers of both

networks have also 25 neurons. Additionally one hidden layer

with 25 neurons has been introduced.

In order to train and test both versions of networks, California
Scientific Software’s BrainMaker Professional v 1.50 has been used.
The training process was carried out in two stages.

First, both networks were trained using only rules as

input information. Taking into account the values of the training
process parameters : training tolerance - 0.01, testing tolerance
- 0.01, backpropagation learning rate - 0.6 and backpropagation
smoothing factor - 0.3, the learning process has been finished

for the vector version by 1314 rounds ( 9 patterné for each round)
and for the matrix version by 658 rounds. Both trained networks

do not react properly on singleton pattern, however the generali-

zation property allows both of them correctly to react on input



information noticably changed in comparison with trained patterns.
At the second stage additional information originating from
singletons was introduced. This information was limited to 181
rules where in each of them Error, Change in Error and Control
Action are singletons. So both versions of our networks were
trained using 9 + 181 = 190 rﬁles. The training and testing tole-
rance parameters were the same as in the previous stage i.e. 0.01.
However the backpropagation learning rate and smoothing factor

at the begining were taken 1 and 0.9 respectively and after getting
halted in a local minimum, they were changed to 0.6 and 0.3
respectively. The learning process has been finished for the vector
version by 1567 rounds (190 patterns for each round) and for

the matrix version by 639 rounds. In this case both networks react
properly on respective singletons.

Summerizing, let us point out a significant difference in numbers
of rounds learned by each version. An explanation of that

phenomena needs deeper treatment of problems connected with

fuzzy logic controller and neural networks.

4. Concluding remarks

The above presented considerations show that the structure
of multilayer feedforward neural network modelling a fuzzy
controller is not unique. Two versions of such neural networks
have been described. The simulation results also show
that the number of rounds is smaller for the vector version
than for the matrix version; that can be explained by the fact that
for the ﬁatrix version (more weights) it is easier fo distribute
respective information. Both presented versions do not react
properly on singletons patterns. In order considerably to improve

performance such networks should be trained with additional rules



in which conditions and conclusions are singletons.

It should also be pointed out here that however the equivalence
theorem of neural networks and fuzzy controllers exists [7],

the problem of practical realization of such neural network

learned only using fuzzy rules and reacting correctly on singletons

(in the similar way as a fuzzy controller does) remains still open.
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Fuzzy Sets for Error, Change in Error and Control Action



