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Abstract: This paper proposes to use Yager’s parameterised t-norm T, to solve multicriteria fussy
linear optimization problems. Considering flat fussy numbers with linear reference functions the
T,-based additions in objectives and/or in left-hand sides of constraints lead to flat fussy numbers
having linear reference functions as well (independently of the value of parameter p). Varying the
parameter p the decision maker can choose different aggregation concepts for particular constraints
or objectives between the extremes of pessimistic T,=Tw=min and optimistic Tp(z,y)=T1(z,¥)=
max{0,2+y—1} approaches and simultaneously control the growth of spreads i. e. the growth of

uncertainty in calculations.
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1. Introduction

Let us consider a multicriteria LP-model of the form

€111 + €12Z2 + ...+ C1pnZn
: : — max

Cr;-’l?l +cr2.$2 + ... +Crn:'5n
subject to (1)
4171 + a2 + ...+ @inTh < b  i=1,...,m
z; >0 J=1...,n

Solving real decision problems, we often encounter the difficulty that the parameters

aij, ckj, b; € IR are not known exactly. A suitable way to model these imprecise data is
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to use fuzzy sets. Replacing the crisp parameters by fuzzy sets f‘{.-,-, é),,- and B; we get a
multicriteria fuzzy LP-model (2).

Following the methods described in Rommelfanger [8,10] we assume that a compromise.
‘solution of (1) is got By an interai:tive process which is based on fuzzy aspiration levels D;
specified for each of fhe goals.

In doing so, the task at each iteration step is to find a solution of the system of fuzzy

constraints

C~'k1:c1 +é'kzxz +...+C~'1ma:,.2ﬁk k=1,...,r (2)
fiﬂxl +fi,'2$2'+ ...+1i.~,,z,‘51§.- t=1,...,m (3)

forz; >0, j=1,...,n where ﬁk are the aspiration levels specified by decision maker.
The majority of approaches in the literature use Zadeh’s extension principle based on

the minimum-norm for summarizing the left sides of the constraints (2), (3).
Dubois and Prade [1] showed that if all the coefficients ékj = (cfj,cﬁ,'y,f'j,'yﬁ)

fi,‘j = (af;-,af;, af‘j,af-;-) r»J =1...n are (flat) fuzzy numbers of the same LR-type than

LR or

the left sides of (2), (3) may be summed up to LR-fuzzy intervals

ék(xl,...,zn) = (cf,cf,qf‘,'yf)LR (4k)
where
n n n n
L L U U L U U
k=) _ckiEi o =) ez AE = Y iz W= Y bz (5k)
j=1 j=1 j=1 J=1
or
/'i,-(xl,...,xn) = (af‘,a?,a,‘-.‘,a? LR (61)
where
n n n n
L U U L .
a;” = Za{‘,x} a; = Z a'-jzj o = Z aiszj a? = agzj (71)



In the literature, there exist different concepts for interpreting the inequality relation in

fuzzy constraints

Ci2Dy k=1,...,r (8)

ASB;  i=1,...m 9)

Well known interpretation of the inequality relation S in fuzzy constraints of type (9) are
those of Negoita, Sularia [5], Tanaka, Asai [12], Ramik and Rimanek (7], Slowinski [11]
and Rommelfanger [8,10]; see the detailed survey in [9].

In this paper we adopt from [10] the very flexible interpretation ”<Sp”:

f n

Y (a¥ + TR Y(€))2j < bi + BiR™(e) (10)
AWseE = {7
LH, (Zagzj) — max (11)
[ i=1
where
1 ify<b
bE; (y) = (12)

B (y) ify > b
and pp, is the membership function of the right-hand side of the LR-fuzzy number
I§,~ = (bi,ﬂ{‘,ﬂfj)LR; see Figure 1.

Slowinski [11] called the inequality (10) the pessimistic indez in comparison with another
inequality which was named as optimistic indez. But, we think the denotation pessimistic
is correct, because the summarizing of the left sides of fuzzy constraints (3) is based on
the pessimistic minimum-operator so that the spreads a? = 3.7=1 @5 x; increase largely
with the number and size of the variables z;.

In this paper we present a new, more flexible alternative for summarizing the left sides of
the constraints (3), when the extended addition is based on Yager’s parametrized t-norm
T,. Varying the parameter p the decision maker can choose different aggregation con-

cepts between the pessimistic minimum-operator and the optimistic Lukasiewicz’s t-norm

Ti(z,y) = Tp(z,y) = max{0,z + y — 1}.
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Figure 1.

2. Modelling the fuzzy parameters

For simplifying the formulas we remark that in practice all the (flat) fuzzy numbers
in (3) may be described by piecewise linear membership functions. A practical way of
modelling suitable membership functions is proposed in [10]. At first the decision maker

has to specify some prominent membership levels. E.g.

a=1: pp(y) =1 means that the value y with certainty belongs to the set of
available values,
a=2A4 : pB;(y) > Aa  means that the decision maker (DM) is willing to accept y as an
available value for the time being. A value y with pp,(y) > A4
has a good chance of belonging to the set of a.va.ilﬁble values.
Corresponding values of y are relevant to the decision. Ob-
viously, a value y with up;(y) = A4 is a sort of aspiration
level.
a=¢€: pup,(y) <e€ means that y has only a very little chance of belonging to the
set of available values. The DM is willing to neglect the values
with up, (y) < e

Subsequently the decision maker has to fix values b}4 and b¢ such that up, (6}) =4 and



kB, (65) = e.

Then the polygon line from (b;,1) over (b4, 4) to (b, €) is a suitable approach to KB,
on the interval [b;,bf]. For all y & [b;,b§] we set up, (y) = 0; see Figure 2. Taking pattern
from LR—type fuzzy numbers we symbolize a fuzzy number with this special membership

function by B; = (bg;O, 0; ﬂ?‘ ,ﬂf)'\"e, where
BM =b}4 —b; and B =bf — b

If required, the decision maker may specify some additional membership levels and addi-

tional points (y, up, (y)) on the polygon line.
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<

Figure 2.
On the analogy, the fuzzy aspiration level D; can be described by
ﬁk = (dk;5,"\‘4,5£;0,0)'\"€

The coefficients fi,-j and é’k,- may be characterized by trapezoid fuzzy intervals. As the
spreads of the coefficients are much smaller then those of the right sides, we will neglect
the level A4 and use the representation

fiij (L U _Le Ue)e

€
= \Gij» Gaj» Xy » O

A L U _Le U
and Ckj = (ckjackj,'Vk;"ije



3. t-norm based addition
A real operation * : IR X JR — IR can be extended to fuzzy sets on IR in the sense of
Zadeh’s extension principle as follows

#a,5(2) = sup T(ua(z),m4(y) 2€RR (13)

Try=2z

where @, b € F(IR) and T : [0,1] x [0, 1] — [0,1] is an arbitrary t-norm. As it was
mentioned above, linear optimization methods known from the literature use mostly the
minimum-norm (T = min).

For getting a more flexible coricept, now we propose to define the addition via the
extension principle based on a t-norm having zero divisor, namely, on Yager’s parametrized

t-norm:
Tp(x,y)=ma.x{0,1—((1—1:)"+(1—y)")1/p} z,y€ 0,1, p>0 (14)

or in case of n variables

n 1/p
Tp(t1,.-.,ta) = max {0,1 — (Z(l - t,-)”) } ottt €]0,1) (15)
1=1
For the special case, that all the coefficients 11.‘,- are trapezoid fuzzy intervals of type
v L U

/i,-j(:c) = (a¥, a} oy o

175 Gij» ) there exist the following theorem:

Theorem 1. Suppose the coefficients f'i,-,- of the left hand side of the inequality constraints
fi;lzl +fi,'2z2 + ...+.“iinzn5é¢ 1=1,...,m (161)

are trapezoid fuzzy intervals of type J‘iij (z) = (af; , a,f-]j, a,-LJ-, ag) . If the addition is extended

by Yager’s t-norm T, (14) with p > 1 then

Ai(X) = Ajzy + ATy + ...+ Ainzy = (af (x), Y (x), &F (p,x), o (p,x))  (17)



is also a fuzzy interval with linear reference functions and

n n
aF (x) = Zaf;-x,- ' a? (x) = Eag-z,-
7=1 J=1

q _ ((xlafi)q R (z,;a{;.)q)l/q' (18)

1
((zlag)q +...+ (z,,ag,)q) e

af(p,x) = “ (Zla{i, o )znaf;l)

a?(p,x) = “(zlag,...,x,.ag,) . =

where ¢ > 1 such that ,1—, + 2 =1.

1
q
Remark 1. The proof is based on results of Fullér, Keresztfalvi [2] and on the following
fact originally used by Kovécs [3,4]: there exists a natural bijection between the normed
linear space IR™ and the normed liﬁear space of linear functionals on IR", i.e. Lin(IR", IR).
Moreover, this bijection is an isometry if we normalize Lin(IR", IR) with the | - ||, norm

and IR with the || - ||, norm where :7 + ;Il- =1.

Remark 2. We can see that o (p,x) and oY (p, x) decrease while p decreases (¢ increases).
This property provides a good possibility of controlling the growth of spreads i.e. the
growth of uncertainty during the calculations. From (20) it follows that using Tp-based

addition we neglect the combinations

{(tl" .o ’tn) TP(”'An (tl)v ey A, (tn)) = 0} (21)

Decreasing the parameter p the zero divisor of T, becomes greater, that is, the set of
neglected combinations and the risk taken by decision maker increases.

Both extreme cases are worth mentioning:
(i) p=1(and ¢ = 0o) then T, = T}, is the well known Lukasiewicz’s t-norm: T} (z,y) =

TL(z,y) = max{0,z + y — 1}. In this case A;(x) have the smallest spreads

of (1,%) = max{z,a¥,... ,Tnok}

af-](l,x) = ma.x{:z:laf-{,...,x,,ag,}

but the decision maker takes the greatest risk.



(ii) It is also easy to see that if p tends to infinity then T}, tends to the min-norm and we
come back to the min-based addition. Thus, if ¢ = 1 (and p = oo) then A;(x) have

the greatest spreads:

L. L L
a;'(00,X) = zy041 + ...+ zpog;,

af (00,%x) = z10Y + ...+ zpal

and there are no neglected values in (21) with positive grade of membership.

On the other hand, the 1-level set [aF (x), a¥ (x)] does not change with the parameter p.

4. Optimization process

Using the extended addition based on the t-norm T, we have an opportunity to change

the inequality relation Sp to

_ ) o] (%) + of (p,x)(1 — €) < b; + 5§ (22)
Ai(X)SgrBi <= v
1, (af (x)) — max (11)
For linear reference function R and for p = oo this version is identical with the original

form, but in general this inequality can be varied with p.

Now, the decision maker has two ways to express his risk mentality:

(?) by specifying the values ai;, ckjy bf, di;

(1) by choosing a value p € [1,+o0o][ for each objective and for each constraint inde-
pendently.

In order to demonstrate the influence of p, we consider the following simple example:
(2,3;1;1)¢z; + (4, 5;1.5;2)255(30; 0; 6)¢
(7) using the min-operator we get according to (10)
4z, + Tzg < 36

(see the set of feasible solutions X, in Figure 3.)



(%) using the other extreme, Lukasiewicz’s t-norm (i.e. p = 1) we get
3z; + 523 + max{z;,2z3} < 36

which is equivalent to the system

4z, + 525 < 36
{ (23)

3z + 729 < 36
The set of feasible solutions of (23) is by the set M; greater than X, i.e. equal to

X1 = Xoo UM, . If the number and the size of the variables z; increase, the part of M, in

X1 increase too.

X2

4X1+5X2=36

3x47%,=36

Returning to the system of fuzzy inequalities (2), (3), we model the fuzzy aspiration level
ﬁk in analogy to f)'g as 13;; = (dk; 6:‘ ,IS,i)'\“'e and introduce for the extended addition of

the left sides C; (x) = é’kl z; + ékz Za+...+ (:'k,.z,., based on t-norm T}, the corresponding

notations

n n
K (X) =) ek;a; ek (X) =) ckjzs
i=1 5=1

= ((zlryfl)q ...+ (x,.’yf‘,.)q)llq (24)

1/q
. = ((zl'y,?l)q +...4 (:c,,'y,?n)q)

’Yf(p,X) = ”(zl'hfl, oo ’zann)

W (%) = || (21985 > 2n2En)



Using the inequality relation Sxp we have

. . ¢k (%) — 7 (p,x)(1 — €) > di — & (25)
Dks KRC" (X) <~ .
4z, (cF(x)) — max | (26)
where
1 if y > d;
pz.(y) = { #D(y) ifdr -6 <y < dy (27)
0 if y<dp— 6

Therefore, the system (2), (3) is equivalent to the crisp optimization problem

(;Azl (e (%)), .., nz, (cF(x)), pa, (a¥ (%)), .., nH, (a4 (x))) — max (28)

subject to
—cF(X) + (@ x)(1 —€) < —di + 6 k=1,...r
af (x) + ¥ (p,x)(1 —€) <b; + Bff  i=1,..,m (29)
z; >0 j=1,...n

Denoting by X, the set of feasible solutions of the constraint system (29), we have
XOOCXPQCXPICXI if 1<p; <p3 <o

because the spreads oY (p, x) and ~£ (p,x) are decreasing functions of p € 1, +00].
In particular, we can discriminate the following cases:
() if p = oo, the constraint system (29) consist of r + m linear inequalities and n
non-negative-restrictions; the set of feasible solutions X, is a simplex.
(#7) if p = 1, we get instead of each of the inequalities in (29) n linear inequalities, so
that X; is a simplex too.
(#37) if p €]1,+00[ we have

. ((xlaﬁ)" Tt (x"a{?)q)l/q (30)

af’(p,x) = “ (:cla{‘l, el ,xnaf’n)



of (p,x) = ”(zlaﬂ,...,x,ag.) ((xlag)q - (z,.ag,)q)‘/"

q

0,0 = (o1 o), = (eroh) +o 4 (eafa)')” (31)
W (e %) = || (21982 2 7En) = (@) +...+ (3n'7gn)q)1/q

with ¢ = 525, In these cases the inequalities in (29) can not be replaced by linear
ones, but the set of feasible solutions X, is convex for all p €]1,+00[. Convexity

of X, can easily be proved using the triangle inequality for ” . "p.

As to practical problems, a decision maker is not interested in getting the complete

solution of the system (28), (29), but he needs a procedure which generates a so-called

compromise solution.

In order to determine a compromise solution, we introduce Zadeh’s minimum-operator

as an appropriate preference function. Obviously, the compromise objective function
A(x) = min {uz, (£ (), - iz, (cF (), mar (f (), o i (a2 ()} (32)

expresses the total satisfaction of the decision maker on Xp.

If X, is not empty, the decision problem

fg?: min {”Zl (cfl(x))’ e M7, (C,{J(X)), BH, (al],J (X)), sy HH,, (anUz (X)) }
is equivalent to the optimization problem
A — max

subject to (33)
A < g, (cF(x)) k=1,...,r

ASuH'.(af-](x)) t=1,...,m

xeX,, 0<A<1



Following the explanation in [10], we adopt that all the piecewise linear functions uz,
and upg; are concave membership functions. Then, if p = 1 or p = oo, the system (33) is a
crisp LP-problem and a solution can be got by using the well-known simplex procedures.

But, for p €]1,+00[ we arrive at a non-linear problem. If X, is convex then the set of
feasible sulotions of the system (33) is convex too and there exists an optimal solution of
(33), see. e.g. Neumann [6]. For getting a compromise solution one of the reduced gradient

methods can be applied.
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