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Abstract

If one considers the membership degrees of fuzzy sets as truth val-
ues of a many-valued logic there is a canonical way to define a fuzzified
equality for fuzzy sets. The definitions contain as parameters t-norms
which act as truth functions of the conjunction connective. For some
such t-norms the negation of the fuzzified equality has the property of
a metric. The paper gives a necessary and sufficient condition which

characterizes all those t-norms which in that way yield a metric for
fuzzy sets.

1 The basic notions

We assume that a fixed universe of discourse X is given which contains at
least two elements. The membership degrees p4(z) are considered as truth
degrees of a generalized, i.e. many-valued membership predicate €. For
membership of a point @ € X in a fuzzy set A € IF(X) we then write: ac A.
But, as usual in formal logic, now we have to distinguish between this well-

formed formula and its truth degree [ae A] which is nothing else than the
usual membership degree: [ae A} =4e; pa(a).
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This notation [...] for the truth degree will also be used in case ... is a
more complex expression. As basic tools to built up more complex expres-
sions, connectives for conjunction, implication, negation and a quantifier for
generalization will be used. As usual, the negation operator — is character-
ized by

[~H] =aes 1 - [H] (1)

if H is any well-formed formula of the (set theoretic) language we just are
constituting. Quite standard, too, is the understanding of the generalization
quantifier V which is read as the infimum of the corresponding truth degrees:

Ve H(@)] =a int [H(2)]. @

A wide variety of possibilities exists to interpret the conjunction connec-
tive A. We will allow any t-norm, cf. e. g. [1], [6], [7], [8], to be used as truth
function for A. And we write A4 to indicate, that ¢ is the truth function
which characterizes Ag. Hence one always has

[Hy A¢ Ho] =aes [Hi] t [H]. (3)
There is a special case, the so called Lukasiewicz conjunction & characterized
via (3) using the t-norm

1w, v) =gy max{0,u 4+ v — 1}. (4)

For t-norms we write &; S ¢, iff ¢;(u,v) < ta(u,v) for all u,v € [0,1].
Among the t-norms the left-continuous ones are of special interest. With
them by the definition

Ut v =ges sup{w | utw < v} for all u,v € [0,1] (5)

a ®-operator ¢ is connected which is the truth function of a suitable im-
plication connective —4 to be considered together with Ag; cf. [2], [3].
(For the t-norm ¢y . the corresponding ®-operator L 15 the well known
Lukasiewicz implication: u g, v = min{1,1 — u + v}.) The left continuous
t-norms ¢ also have another important property:

upgv=1 & u<v forall u,vel01] » (6)

which is essential for the proof of the theorem.



One of the basic relations for fuzzy sets A, B € IF(X ) over a given universe
of discourse X is their inclusion relation

ACB & pu(z) <pp(z) forallzeX. (7N

With the logical preliminaries the fuzzified inclusion now can be defined
by

ASyB =45 Vz(ze Ay zeB), (8)
which means in more traditional notation
[AS:B] = ilelisup{w] [ze Ajtw < [ze B]}. (9)

Obviously, this is a direct generalization of (7). For, if pa(z) < pp(z) one
always has pa(z) g pp(z) = 1, therefore from A C B one gets [AS 4Bl =1.
And conversely, if u4(x) o4 pp(z) = 1 then for finite X one immediately gets
pa(z)tl < pp(z) and hence ps(z) < pp(z), and for infinite universes X
and left continuous ¢ one has the same by (6), which means that in those
cases from [A S ; B] =1 one gets A C B.
In the same manner the fuzzified identity can be defined as

A=y B:dengtB/\thtA. (10)
Both these fuzzified relations (8) and (10) in those formulas are defined for
fuzzy sets in essentially the same way the corresponding notions can be de-
fined in classical set theory for crisp sets. Only the language now has to be
read in the sense of many-valued logic; cf. [4].

This generalized identity is a kind of fuzzy indistinguishability relation
for fuzzy sets. Their negation, hence, should be something like a “measure
of difference” for fuzzy sets, i.e. a kind of distance.

Finally we need the notion of a metric in JF(X). A twoplace function o

from JF(X) into the nonnegative reals IR* is a metric iff for all A,B,C €
IF(X) the following conditions hold true:

(M1) o(A,B)=0 iff A=B, . (identity property)
(M2) o(A, B) = o(B, A), (symmetry)
(M3)  o(A4,C)+ o(C,B) > o(A, B). (triangle inequality)
Sometimes the identity condition (M1) is weakened to the condition
(M1?) o4, 4) = 0.

By a pseudo-metric p then a function is meant that fulfills conditions (M17),
(M2), (M3).



2 t-norms and corresponding distances

Given a left continuous t-norm t, a binary “distinguishability” function g4
is defined on FF'(X) by

0t (A, B) =4e; 1 — [A =4 B, (11)

i.e. by always putting o4 (A, B) = [-(A = B)].

The problem of the present paper is to find a necessary and sufficient
condition for ¢ to yield via (11) a metric with properties (M1),..., (M3) as
distinguishability function gy .

The following theorem is the main result.

Theorem 1 Suppose t is a left continuous t-norm. Then the function 0t
of (11) is a metric in IF(X) iff t 2 o t-e iff for all u,v € [0,1]:

max{0,u+v—1} < utw.

A close look at the way that theorem can be proven shows that it is
enough to have definition (5) for a given t-norm t, cf. [5].

Formally, but, this definition does not need the assumption of the left
continuity of . Thus, perhaps this asumption is not necessary or can be
weakened.

Indeed, the arguments to establish that g4 has properties (M2) and (M3)
do not use the left continuity of ¢, cf. [2]. Thus, the crucial point is the proof
of (M1). And for that case the following lemma holds true.

Lemma 1 For pt(A, B) =4e5 1 — [A =4 B] it holds true
0t(A,B)=0 & A=B fordl A,B € F(X)
if each function t, =g Av(utv), u € [0, 11, is (left) continuous at v = 1.

This lemma therefore shows that the continuity assumption in the theo-
rem can be weakened.

Furthermore, by the reflexivity of = it is obvious that condition (M17),
which instead of (M1) is used to define pseudo-metrics, always holds true for
ot

Thus the following results hold true too.



Corollary 1 g; is a metric iff t = t ;4 and each one of the functions
t, = Av(utw) is left continuous at the point v = 1.

Corollary 2 p; is a pseudo-metric iff t 2 Lo

Unfortunately, yet, it is not clear if these corollaries are as interesting as
the theorem. The crucial point here is that in case of a t-norm t which is
not left continuous, for ¢; the property

ut(upgv) <v for all u,v €[0,1] (12)

fails, cf. [3]. But (12), one of the main properties which in [6] were used to
define ®-operators, means that the generalized conjunction Ay and the gen-
eralized implication —; together fulfill a kind of generalized modus ponens:
the truth degree of a well-formed formula H; always is not smaller as the
truth degree of the Ag-conjunction of formulas H; and H; —¢ H,.

So we have the situation that the greater generality of the corollaries
with respect to the theorem rests on the assumption that the modus ponens

condition (12) is not an essential one for the context, the corollaries are used
in.
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