ON SYMMETRIC DECREASING DIAGONALLY DOMINANT FUZZY MATRIX

Liu Huixiu

Mine Company Cader Shool of Anshan Iron And Steel Company Anshan, Liaonieng, CHINA

ABSTR ACT

In this paper, we first introduced the concept of symmetric decreasing diagonally dominant fuzzy matrix, gived a construct method of its realization matrix and point out its content not is greater than the order of itself.

The main results of this paper are as follows:

Definition 1. Let $B = (b_{i,j}) \in L^{n \times n}$ such that

(1)
$$\forall i,j \quad b_{ij} = b_{ji}$$
;

(2)
$$\forall i,j \quad b_{ii} \land b_{jj} \geqslant b_{ij}$$

then we call B the symmetric diagonally dominant fuzzy matrix.

Theorem 1^[1]Let B = $(b_{ij}) \in L^{n \times n}$, then B is a realizable iff

(1)
$$\forall i,j \quad b_{ij} = b_{ji}$$
;

(2)
$$\forall i,j \quad b_{ii} \geq b_{ij}$$
.

Theorem 2. Let $B = (b_{ij}) \in L^{n \times n}$, $\sigma = (1 \quad 2 \quad \dots \quad n)$

is a permatation, and $B^* = (b_{i,j}^*) \in L^{n \times n}$ here $b_{i,j}^* = b_{i,j} = b_{i,j} = b_{i,j} = b_{i,j}$ (i,j=1,2,...,n), then the following results hold:
 (1) If B is a realizable, then B is also a realizable;

- (2) If $A = (a_{i,j}) \in L^{n \times m}$ such that A A' = B and A'' = B $(a_{i,j}^*) \in L^{n \times m}$, where $(a_{i,j}^*) = a_{\sigma(i)} j^{(i=1,2, ..., n; j=1,2, ...)}$..., m), then $B^* = A^* (A^*)';$
- (3) If B is a realizable then $r(B) = r(B^*)$, where r(B) denotes the content of B.

Theorem $3^{[i]}$ Let L = (0,1), B = $(b_{ij}) \in L^{n \times n}$ is a realizable, if there is a $B^* = (b_{i,j}^*) \in L^{n \times n}$ such that $b_{i,i+1}^* = \max \{b_{i,j}^*\}$ j = i+1, ..., n for i=1,2, ..., n-2, then B^* is a realizable and $r(B) = r(B^*)$.

Theorem $4^{[i]}$ Let $B = (b_{ij}) \in L^{n \times n}$ then B is a realizable iff any its submatrices that is obtained by striking out certain rows and columns with same ordinal numbers is realizable.

Theorem 5. Let $B = (b_{ij}) \in L^{n \times n}$, then B is a realizable iff

(1)
$$\forall i,j \ b_{i,j} = b_{j,i};$$

Theorem 6. Let $B = (b_{ij}) \in L^{n \times n}$ $(n \ge 3)$ is a realizable

and B such that

$$b_{12}^{*} \ge b_{13}^{*} \ge \dots \ge b_{1n}^{*}$$
 $b_{23}^{*} \ge b_{24}^{*} \ge \dots \ge b_{2n}^{*}$
 \vdots
 $b_{n-2}^{*} \ge b_{n-2}^{*} \ge b_{n-2}^{*}$

then

$$A^{*} = \begin{pmatrix} b_{11}^{*} & b_{12}^{*} & \cdots & b_{1}^{*} & n-1 & 0 \\ 0 & b_{22}^{*} & \cdots & b_{2}^{*} & n-1 & b_{2n}^{*} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & b_{n-1}^{*} & n-1 & n \\ b_{1n}^{*} & 0 & \cdots & 0 & b_{n}^{*} & n \end{pmatrix}$$

is a realizable of B*.

Definition 2. If $B_i = (b_{i,j}) \in L^{n \times n}$ satisfied:

(1)
$$\forall i,j \quad b_{ij} = b_{ji};$$

(2)
$$\forall i,j \quad b_{ii} \land b_{jj} \geqslant b_{ij};$$

(3)
$$b_{12} \ge b_{13} \ge \cdots \ge b_{1n}$$
,

$$b_{13} \geqslant b_{23} \geqslant \cdots \geqslant b_{2n},$$

then B is called by a symmetric decreasing diagonally dominant fuzzy matrix.

Theorem 7. A symmetric decreasing diagonally dominant fuzzy matrix is a realizable, and its content not is greater than order of itself.

Definition 3. For $B = (b_{ij}) \in L^{n \times n}$ if there is a permatation $\nabla = (\frac{1}{2}, \frac{2}{2}, \dots, \frac{n}{n})$ such that $B^* = (b^*_{ij}) \in L^{n \times n}$ where $b^*_{ij} = b$ $\sigma(i)$ $\sigma(j)$ (i,j=1,2,...,n) is a symmetric decreasing diagonally dominant fuzzy matrix, then B is called subsymmetric decreasing diagonally dominant matrix.

Theorem 8. If $B = (b_{ij}) \in L^{n \times n}$ is a sub-symmetric dereasing diagonally dominat, fuzzy matrix then $r(B) \le n$.

Theorem 9. Algorithm for finding a realization of B, where B is a sub-symmetric decreasing diagonally dominant fuzzy matrix.

- (1) By exchaging some columns of B we make B into decreas by rows upon diagonal and exchage corresponding rows, we get matrix B^* .
 - (2) On the basis of the proof of theorem 6 write A^* .
- (3) By exchanging some rows those are exchanged in (1), we get a realization A of B.

REFERENCES

- (1) Wang Mingxin, The realiable conditions for fuzzy matrix and its content, (China), J. Fuzzy Math., Vol.4, No.1, (1984), p 51-57
- [2] Wang Geping, Some estimations of the least upper bound, of content for realizable matrices on a completely distribution lattice, J. Fuzzy math., Vol 5, NO 3 (1985), p65-73