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Abstract
In this paper, we shall introduce the concept of metric pan—space
and the pan—weak convergence of a type of fuzzy measure seguences
and discuss the relation between the pan—weak convergence and the
uniform convergence over the class of convex sets on R¥ of the

fuzzy measure sequences.
1. Introduction

Since Sugeno[1] introduced the fuzzy measure and the fuzzy integral
in 1974, many articles [2-—6] had been written dealing with diff-
ernet generalization of the fuzzy measure and integral ,Studying the
structure of the fuzzy measure and discussing the covergence of a
sequence of the fuzzy integrals for a fixed fuzzy measure, but alm-
ost no papers appeared discussing the sequence of fuzzy measures.
The purpose of the present paper is to introduce a kind of conver—
gence (called pan—weak convergence) of some type of fuzzy measure
sequences and discuss the properties of the pan-weak convergence
and the relation between the pan—weak convergence and the uniform
convergence over the class of convex sets of the fuzzy weasure se—

guences .

2. Metric pan—space, and the pan—weak convergence of a type of

fuzzy measure sequences

Let (X,d) be a metric space. The smallest o —algebra generated by
all of open subsets of X is denoted by B(X). It is easy to see that
B(X) is also the smallest G-algebra generated by all of closed sub-
sets of X.



Let (X,d) be a metric space,(X,B(X),/u) be a fuzzy measure spacei2]
and A € B(X). If

M(A)=Supl U(F)IFcA, F is closedl=inf[ U(G)IG>A, G is open]
Then A is called ,U—regular./u is called regular if A is M —regular
for every A € B(X).

Proposition 2.1 The fuzzy measure M has the following property:

Mlim A) € LimucAy) L;,‘ MA) & M(Lim AR)

00

00 — % o
Where An (n=1,2,...) € B(X), LimAn 1A LimAn= ] {J A,
n n=| K=n n n=t k=n

The validity of the following two propositions is clear.
Proposition 2.2 Let (X,d) be a metric space and (X,B(X), U) be a
fuzzy measure space, A € B(X). Then A is M-regular if and only if
there exist a open subset G, and a closed subset F, such that

F,.€AcG, and UG, < JM(Fy)+r for every r>0.

Proposition 2.3 Let (X,d) be a metric space and (X,B(X) »M) and
(X,B(X), V) be two regular fuzzy measure spaces. If

MEI=VF) (or U(B)= V(G))
for every closed subset F (or open subset G) then M=V,

Proposition 2.4 Let (X,d) be a metric space, E and F be two closed
subsets in X and ENF=¢. Then there exists a continuous function f
defined in X such that

(1) 0<f(x)<1 for every x € X.

(2) £(x)=1 if x € E and f(x)=0 if x ¢ F.

Proof. Define d(x,F)=infld(x,y)!y€F], x€X, for every fixed F.
It is easy to see that d(x,F) is a uniformly continuous function on
X. Since E and F are two disjoint closed subsets then

d(x,E)+d(x,F)»0 for every xegX.
Let



d(x,E)+d(x,F)

It is easy to verify (1) and (2). The continuity of the function f
can be obtained by the continuity of d(x,F) and d(x,E). The proof
is completed.

Definition Let (X,d) be a metric space, (X,B(X) »AL) be a fuzzy
measure space, R =[0,%) and # be a binary operation on R® Then
(X,d,B(X), M ,R",# ) is called metric pan-space if

(al) a#b=b#a (a2) a#(b#c)=a#(b#c)

(a3) a#0=a (ad) (a#b)c=aciibc

(a5) Lim(a, # b.)=Lima, # Limb, when Lima, and Limb, exist.

(a6) a,# a,%b, # b, when a,< b, and a, <b,.
for all a,b,c,a; by (i=1,2,...) ¢ R*.

Remark. In the definition,we can take a#b=a+b or a#b=avb=max(a,b)
It is easy to see that (al)—(a6é) hold. The operator \/ in fuzzy
mathematics has the same importance as the operator + in classical
mthmtiés‘ Using the concept of pan—space, we can unite these two
operations into the operator # .

Let (X,d,B(X), o1, Rf# ) be a metric pan-space. We say M is pan-
additive if M(EUF)=LU(E)% U(F) for all E,F€B(X) , ENF=¢ . For
every fixed metric space (X,d) and binary operation ¥ . let

n M is regular, finite,pan-additive fuzzy measure on B(X)
M such that (X,d,B(X),,u,R't# ) forms a matric pan-space

+
M - lf £1(A)EBX) for exery Borel subset on real line A

f is nonegative measurable function on (X,B(X)) i.e. } 4

C+= {j- fGM+’ f is bounded and continuous}

For every feM' and METT let

LY A
® jedu ~Linl # (2 ua, ] .

nNH0 m=



Then (P) Sfd}; is called pan-integral of the function f with resp-
ecte to U [6,7].

Where Amn={x“$<ftx)$§’;t'}

The following proposition is the simplest property of pan—integral.
Proposition 2.5 [6,7] If f,geM*, £<g, E€B(X) then

@ ftau < @)feau  anaopfizd - .
Where IE (x) is the characterastic function of the subset E.
Definition. Given u , un (n=1,2,...0¢ [T, if
i — +
L%q(P)jfd};. (P.)dey for every £ ¢ C

then we say that the measure seguence { Mn} pan—weak converges to
M denoted by An-> U (PW), (n—>09).

The following theorem shows that the definition is reasonable.
Theorem 2.6 Given M v ETT if
(P)jfd)u ==(P)jfdv for every £¢¢* then '/u=\}.

Proof. Let F be an ;irbitrary closed set in X
Gn={x!d(x,F)<¢}n=1,2,...

Then FNG.=¢ for every integer n and infld(x,y)!xeF, ye Gf,]?-,!{

By proposition 2.4, there exists £, ¢Ct such that 0<£<1 ,f =1 if

x€F and £ =0 if xer‘ for every integer n. It is easy to see

0<1
By proposition 2.5 we have

stn Slen

HE=P 1pdp 4P [£,du =@ [£,av €@ 1,00 = V(G-

Take n—> 00, by the continuity of fuzzy measure we have U(F)$ WF).
The inequality V(F)< M(F) can be obtained by interchanging )



and 4 in above argument.The proof is completed by proposition 2.3.

Theorem 2.7 If A, Un(n=1,2,...)€T], and An-> 1 (PW) then
Limu(F) < p(F) and Linu(6) 3 u(6)
Where F and G are arbitrary closed and open set in X respectively.

Proof. We only prove the first inequality. The second -one can be
obtained similarly.

Let F be an arbitrary closed set and G,‘<={x!d(x,F)<-,—'<f, k=1,2,...

Then F=0N6x , FNGy—% and infld(x,y)ix¢F, ye6l1s L.
By proposition 2.4 there exists f e ¢tsuch that
0<f, <1 and f(x)=1 if x¢F and £ (x)=0 if x<GL k=1,2,...
It is easy to see Ipéf.flqk . Since ;. 5 u (PW) then

Lin 4 (F)=Lin(P) [1 du, < Lin(P) £, dua= ®)f2,du € @[ 1gdm =6

for every integer k.
Take k—>00, since G, VF, we obtain Linﬂn(F)G’l(F). The proof is
completed.

Let (X,d,B(X), t,R*,# ) be a metric pan-space, AEB(X). We say

A is M-continuous if

JCB®) =p(A) = u(a)

Where A’=|}{GIGcA, G is open} A=({F|F>A, F is closed} .

Theorem 2.8 If M , Ua(n=1,2,...)€¢]T and Mp>u (PW) , Ais u-
continuous then Lim U{A)= u(a)
N>

Proof. From theorem 2.7 and U(A°) = u(A)=M(A ) , we have
M(A) = LA%)€ [_.'_‘igpn(K)SI#p,‘(A)s Limu,(A)

< Ling (B) € M(A)= pu(A)



It implies I';-l,g}.t,‘(A)r. M(A).

3. Some results on the cowex sets
Let R® be k-dimensional Euclidean space, p be a metric on RS, AcRr"
We say A is convex if rx+(1-r)xeR® for every re[0,1] and x,y€A.
Convex sets possess the following simple properties.
Let {A,} be a class of convex sets (re¢[”). Then
(1> NypAy is a convex set.
(2)  UypAv is a convex set if {A,} is a chain.
(3) For every ref?, (F) =2, (A )=A".
Let A" ={ xeR" | p(x,A)< rj for r>0. Then
(4) A is convex if A is convex.
Let A and B be two convex sets on RS, A°%¢ and A°(YB=¢ . Then
(5) there exists a hyperplane H to keep A separate from B.

In the following discussion, we suppose

oA ={a|AcR",A is bounded,closed and convex}
Sy={x1xR%, px,0sr} (x>0

Define §$(A,B)= inflriA"> B, r>0] and §= inflriA 3B, BYJA,r>0]
for A,B¢glLet A(A,B)= $(A,B)+ §(B,A), then A(A,B) defines a
metric on and 9‘,‘4 ) is a metric space. Let d(A,B)=§ . Then
@h,d) is also a metric space. It is easy to prove that the metric
B and the metric d are equivalent.

Theorem 3.1 (Blaschke,[8]) The all of closed convex sets in S,.(r)O)

compose a compact metric space i.e. for every sequence of nonempty
» closed and convex sets in §, denoted by {C,} , there exists a
subsequence § ani converging to a closed and convex set C and

C = n:: U”K cﬂj

Theorem 3.2 Let {C,.} be a sequence of uniformly bounded, closed
and convex sets. If there exists CEdand C% ¢ such that d(C,.C)—>0
(n—>0), then there exists N such that C%+ ¢ for n)N and

C C Upsi Niewn €2



Proof. We first prove Co#¢ for n»N. If it is not true then
there exists a subsequence of {C,}, denoted still by {C,}, such
that Ci¢¢ for all n. Hence there exists a hyperplan H, for every n
such that Cy<H,. Since C°+ ¢ ,then there exists a open sphere

B(z,r) and a one-dimensional affine subspace M, passing through z
such that M lH, .

Let ¥,=M. N (B(z,r)-B(z,r)).
Then d(C,,C) 2 §(Cn, €Y §(CouB(z, ) 3 P (y, LHIZT >0

This contradicts with d(C,,C)->0 (n—> *). Hence there exists N such
that C;# ¢ for n3N.

In the following we prove C°c |J.., NeCr
We can suppose C+¢ for every k. If z6C but zEUn: ﬂ:“C: then
there exists k 2n for every n such that z-G-C:ﬂ . Since zc€C’and the
boundary of C (denoted by D(C) ) is closed, there exists w&D(C)
such that P(z,w)=§ = inf p(z,y)>0.

Yedee)

Notice ZEC:" R {z}nc;ﬂ::ﬁ ,C:ﬂ#«b, then there ex.ists a hyperplane Hk.,
to keep {2z} separate from Cy,that implies d(C,C)>0 . This contra—
dicts with d(C,,C)P¥ (n—>®) that completes the proof.

From theorem 3.1 amd 3.2 we can easily obtain the following
Theorom 3.3 Let {C,Cn,n=l,2,...} be a sequence of uniformly
bounded and closed convex sets and C°4 ¢ . If d(C,,C)—>0 (n—>%)

then

C= Un‘:l n::ncrc = Un: n::nck = nn‘; Un::nCF

4. Uniform convergence of fuzzy measure sequences over the

class of convex sets on R¥ .

In this section, the convex sets considered are always measurable

convex sets on R

Lemma Let uel7, {C,,Clcd0s, for m>0. If d(C,,C)—>0 (n—>w)
and every convex set is M -continuous then U(C,)—>U(C) (n—>0).



Proof. If C°=¢then U(C)=0 because C is M—continuous. Hence

from Prop.2.1 and theorem 3.1 we have

Nz K

0< 3 MCCOSMLINC ) =4 (AR, U2 COS 012, U2, Cod = pA(C)=0

That implies (C,)—>C) (n—> ),
If C°<¢ then, from section 3 and prop.2.1 we have

MLCY= A € M (U2, ML) == (LimCR) € Lim 41 (CR) < Lim ua(Ce)
K 13 o3
and

%o o e ha—
MO= AT US,CO2 M (N U o= M(LinC,) > Lim j1(C,)

That implies ,u(C,:)—%*/J(C) (t—*). The proof is completed.

Note 1. If C, is not closed but d(C,,C)->0 (n—> ) then we
still have },{(C,,)—>).1(C) (n—> 00) .

Theorem 4.1 Let {,u , }J..}c T {c,c,,}cydns.,‘ for some w> 0.
It Jo-> M (PW), d(C, C)—>0 and every convex set ' is U~-continuous
then ;,ln(C,,)—% M(C) and un(C, )—>/U(C°) (n—02),

Proof. Let d(C, ,C)=d, n=1,2,... and d,=sup {d,|n2N}{ N-1,2,..
Then d,>d and d,V0. (N—w). ,

From d(C, ©)=d, we obtain C™*3C. Hence, for every
fixed N and n>N, dy+5 det4 holds. So |

I

|
MACR). S UaCa) € Ma (€ R ) € pa(C ™)

Notice Mo —> M (PW) and every convex set is M-continuous, we have

/
Lm /u,,(C,.) < Lun/u n(Cad & Lm{u (Cd‘ ¢ Lm/q.\(c */ii(Cd”+'-")

dota
= JMC™ L (4.1
[}
Let N=>uvw . Then we have d(C“”*T" ,C)—30.
From the lemma, we know that

tot :
. dtm
Lim g(C™ ™)== u(C).
N 'u #



let N—>¢c0 in (4.1), then
[ im <
) Lim u., (cH< Lm,u(c,,) JTI{» R (4.2)
If C"=¢ ,then from (4.2)
MLCH)—>0 and MLC)—0 hold (n—> ).
1f Cg-'#¢,then for fixed N and n N, we have
[;’_f_g#,,(c,,) >Lin MA(C) 2 Lin Mal 2, CO ;l%gp,.m,i:,p:)
=u(NeL) 2 MNL L) = Nz L) S (4.3

Let N> in (4.3) , from theorem 3.3 we obtain

. . . e 0 (-]
L_:'g_ HMn(Ca)2 I_.%g /u,,<c,‘,’>; L;m MNGCO= U Uy, N

—— Lol had —_
—/d(UNz‘ ﬂWCK)-—),((C)
The proof is completed by combining (4.2).

Note 2. If C, is not closed but d(C,,C)—>0 (n—> %)
then };n(Cn)—>/U(C) (n—>%) also holds.

Theorem 4.2 Let {u /u,,}cﬂ » Un—=> M (W).dmdenotes the
all of convex sets in Sm and every set in Smis M-continuous. Then
M, converges to y uniformly ong‘m‘ i.e. Sug l},ln(C)—/u(C)[—ao.

-

Proof. If it is not true then there exists & >0 and a sequence
of convex sets {C,jcdln such that [ (CO-UCI3E, ...... (4.4)
Obviously, we can suppose CK=/=¢for every k. By Blachke theoren,
we know that there exists a subsequence of {C .} , denoted still by
{Ekf , and a nonempty closed set ced,.. such that d(EK,C)% (k—w)

By the lemma, we obtain L (C)—> M(C) (k—>te)

By theorem 4.1, we obtain Uy (C)—u(C)  (k—>w). :
Hence, | Ue(C)-U(COT £ JULC - MO {+] m(C)- p(©}->0 (k—>e0)
That contradicts with (4.4). The proof is completed.

Theorem 4.3 Let . {u wjcll, UaM ®BW), B,=gNSn and
every set in J3, is Ji-continuous. Then, for every £>0, there



exists§=£(£) > 0 and N=N(¢), such that

Sup | Ua(C - UCH )<t when n>N.
cep. ! e A g
Proof. We first prove Mn (C) S /u(c£)+e m2N) ..., (4.5)

If (4.5) is not true then there exists §,>0 and a sequence of
convex sets | C,,&c B. such that
MC) > pCes (4.6)

By Blachke theorem, there exists a subsequence of { C,,} , denoted
still by {C.j and C€B. such that d(Cp O)—>0 (n—>o). By
theorem 30 (see[8]1) we obtain
A& G0, By the lenma, ve have u(, f-> (T = pCF)  (n—>09).
By theorem 4.1, we obtain

JALC,)—> J(C) (n—310)
Let n—>%° in (4.6), we have

MO > pE+E, e (4D
(4.7) is a contradiction because /J. is finite and §,>0. That is
to say that (4.5) is true. _

In the following, we prove MU(CH-€ € MAC) (3 N) ...... (4.8)
If (4.8) is not true then there exists ¢ >0 and C/ € B (k—l 2,...)
such that \

MECOH-E SpuLCd e e (4.9)
By Blachke theorem, there exists C €j3. such that

d(Ck,0)20 (k—>09). Since d(CK,C)éd(Cf.CK)M(C,_(-:E) -0

(k—>0), we obtain ,U.:(C'l:)—%/.l(C) and M(Cx)— MC) (k—00) from
theorem 4.1 and the lemma. .

Let k— %o in (4.9), we have /(I.(C)—S. SMEC .(4.10)
Because & >0, (4.10) is a contradiction. Hence, (4.8) is true.
Combining (4.5) with (4.8), we complete the proof.
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