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Abstract In this péper, we discuss some relations and
distinctions between possiblity measure and F-additive fuzzy
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1. Introduction

The concepts of possibility measure and fuzzy measure were firstly
introduced by L. A. Zadeh[1l] and M. Sugeno[Z) respectively. Many
authors(A. Kandel[3], H. T. Nguyen[4] etc) pointed out that a
possibility measure is a fuzzy measure before M., L. Puii[5] and
Z. Wang[6] showed that the above statement is not ture in general
when'the discourse set X is infinite. Following [5] and [6], in
this paper, the relations and distinctions between possibilioty
measure, F-additive fuzzy measure and F-additive semi-continuous
fuzzy measure([6]) are discussed in detail for the cases that
card(X) é}&. We show that the concept of possibility measure is
weaker than the one of F-additive fuzzy measure and stronger than

the one of F-additive semi-continuous fuzzy measure.



2. Definitions and assumptions

Let X be a non-empty set and & a <¢-~-algebra of subsets of X. A
fuzzy measure is a set function u: qQ — [0, 1] with the
properties:

(FM1) n(®) = 0;

(FM2) A C B => n(A) € u(B);

(FM3) A, ¢ A5 Ax = n(lim A)) = lim n(An);
(FM4) A, ¢ A, AL} =2 n(lim A)) = lim p(A,).

N->»x : N->p

When n satisfies (FM1), (FM2) and (FM3), we call n a semi-
continuous fuzzy measure.

Let P(X) = {A; AC X}, A possibility'measure is a set function
m: P(X) = [0, 1] with the properties: |
(P1) n(e) = 0;

(P2) A C B = n(A) £ n(B);

(P3) p(tY'At) = {k{ n(A,), where T is an arbitary index sef.
We clﬁ easily ;rove thew following two propositions.
Propositionl 1 is a possibility measure iff n satisfies (P1),
(P2) and
(P3)’ n(A) £ \/ n({x}) Y A € P(X)
Proposition?2 I&AA fuzzy measure or a semi-continuous fuzzy measure o

is a possibility measure iff n satisfies (P3)°’.

As a possibilitry measure p‘is defined on P(X) and has'
F-additivity, i. e. n(AUB) = n(A)V u(B), then if we want to
discuss the relations and distinctions between possibility measure,
fuzzy measure, semi-continuous fuzzy measure, we must assume thaf
qﬁ = P(X) and fuzzy measure and semi—continﬁous fuzzy measure have
F-additivity. |

Throughout this paper, we assume that the fuzzy measure and



semi-continuous fuzzy measure are defined on P(X) and have

F-additivity, and note

FM = {u; m is a F-additive fuzzy measure on P(X)}

PM = {u; n is a possibility measure on P(X)}

SCFM = {u; n is a F-additive semi—cqntinuous fuzzy measure
on P(X)}

3. The relations between FM, PM and SCFM

3.1 X is an arbitary set

Theoreml FM — SCFM, PM ( SCFM.

Proof obvious.

3.2 Card(X) ¢ ¥,

Let X = {x4, 2 YIS xn}, we have

Theorem?2 FM = PM = SCFM

Proof. In [5] and [6], it is pointed out that PM ( FM, then,

from Theoreml, we only need to prove that SCFM . PM.

Let » ¢ SCFM, then, ¥ A ¢ P(X), A = (g s Ko ween xg )
(k £ n), we have, by using the F-additivity of », that
n(a) = n({xii, Xg,0 Tt X{K})
=»({x¢1 }) vp({xil, cee x{k‘})
=)1({x1~1})Vp({X,;z})\/ p({xi}, vy x{K}) = e
=alx; D Valx, 1) V.o yerx, ) = V a({x})
! 2 k XeA

Applying Proposition2, we know that n € PM and this ends the

proof.,
2.3 Card(X) = N

Let X = {x Xy eeey X

1’ 2 '\’
Theorem3 - FM < PM = SCFM

+++}, we have

Proof. From Theoreml, it is sufficent to prove that SCFM ( PM.



Let n ¢ SCFM, then, ¥ A ¢ P(X), (1) if card(A) < ) , the

conclusion follows by refering the proof of Theorem2; (2) if

card(A) = ¢, note A = {xi\', c+0s Xy 5 w0}, there holds
n(A) ='P({XQ ) ee ey xiu, ceo}) = p(iizwifxq s e e ey x{k})
= Lim p(fxg s oees % D) |
= iizap({xi1})\/... V’p({xiw}) (cf. the proof of Theorem2)

= ¥ n({x- }) = \/ pl{x})
n = " XEA :

Using Proposition2, we obtaion that m ¢ PM, and then the proof
is complete.
2.4 N, <card(X) éN,
We have
Theorem4 FM ¢ PM (C SCFM
In the proof of Theorem4, we consider thét Cantor’s continuum
hypothesis is true, that is to say, AL, (ﬁcard(X) £ }ﬂ is
equivalent to that card(X) =~N}. It must be pointed out that even
we don’t admit the continuum hypothesis, Theorem4 is also true,
which wiil be explained at the end of this section.
Proof of Theorem4 We suppous that card(X) =3q1.

It is obvious that P(X) has only the opefations "Lj", "[\" and
"_" of subsets of X and has nothing to do with the structures
(algebraic, topological or ordered etcfdefined on X, it is
equivalent to say that we can endow any structure on X and this
action has no inflence on our problem. At the same time, since
card(X) =9ﬁ s then there exists a bijection between X and interval
[0, 1]. Then we may assume that X has the same structure of [0, 1]
or we regard X = [0, 1] and prove Theorem4, this assumption_is
without any loss of generailiy to the proof. In the following, we

assume that X = [0, 1].



From Theoreml, it only need to prove that FM (. PM.
Let n € FM, we show that n ¢ PM.
Y A¢é P([0, 11), if pu(A) = 0, then

n(a) €V n({x})

) XEA
and the conclusion follows.

If u(A) > 0, noting A7 = A\ [0, 1/2], AY = AN[1/2, 1], from

F-additivity of u, we have

n(a) = u(Al) V a(a})

When u(A) = p(A?),_take A1 = A:, otherwise, take A; = Al, we

have
n(A) = n(a,)

Without any loss of generility, we suppose that A4CLf0, 1/21.
Observing that A7 = A, N[0, 1/41, A} = AN [1/4, 1/2]1, similar to
above discussion, we can choose A, = A?(or A3) such that

P(Az) = u(A,)
According to the same priciple, we can choose AS’ Agy vovy A,

« v suck tRhat ALCAn) = MA, Vi e ,1/) and ADADADD
A Do
n

Furthermore, from the process of choosing {A, }, we easily

o0
know that IP\A7L= & or there exists unique Qle [0, 1] such that
‘h = )

o0
A = {X}.
As n ¢ FM, we obtain that

o0
n(/MNA,) = lim p(A,) = u(a) > 0
n= > 00 29 >
This implies that f\Aw# g, i.e. N A, = {x} and hence
n=g n=)
»(A) = p({X}) £ V u({x})
AEA
and Theorem4 is proved.

Remark. If we don’t admit the continuum hypothesis, we can embed X



into a subset of [0, 1](in the sense of above discussion) and

prove Theorem4 according to the same process mentioned above.

4, Distinctions between FM, PM and SCFM
4.1 When card(X) = g@, we have FM # PM

We can define u € PM as follows:

n(A) 1 A}

=90 A =4
but u ¢ FM. In fact, as X is infinite, we can choose a contable
subset {x1, xz, ceey X, cee} C X. Note Avx= {xn, Kpggr oo },
v n € N, we have A.,,_l,ﬂ(, p(A“) = 1, but p(ﬁf) = 0,
4.2 When card(X) >No’ we have PM # SCFM

We can construct M € SCFM as follows:

n(A) 1 card(A) > &, ,
= 0 card(A) 4}%,

but u ¢ PM. In fact, pu(X) =1 and V u({x})
Xex

]
(=]

5. Conclusions

The results arrived at in the section 3 and 4 can be summaried

below:

(1) Card(X) < &%  : (n € FM) 2= (n € PM) == (n € SCFM);
(2) Card(X) = t (m € FM) 32 (p € PM) 2 (n € SCFM);
(3) s¥,Ccard(X) €,: (n € FM) 52 (n € PM) =2 (n ¢ SCFM).

" "

where ;. and " s

respectively.

" mean "implies" and "does not implies"
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