RELATIONS AND DISTINCTIONS BETWEEN POSSIBILITY MEASURES AND FUZZY MEASURES

Liu Xuecheng

Department of Mathematics, Hebei Normal College, Shijiazhuang, Hebei, 050091, P. R. CHINA

Abstract In this paper, we discuss some relations and distinctions between possiblity measure and F-additive fuzzy measure, F-additive semi-continuous fuzzy measure which all defined on the power set of X with card(X) $\leq N_A$.

Keywords: fuzzy measure, possibility measure, F-additivity

1. Introduction

The concepts of possibility measure and fuzzy measure were firstly introduced by L. A. Zadeh[1] and M. Sugeno[2] respectively. Many authors (A. Kandel[3], H. T. Nguyen[4] etc) pointed out that a possibility measure is a fuzzy measure before M. L. Puri[5] and Z. Wang[6] showed that the above statement is not ture in general when the discourse set X is infinite. Following [5] and [6], in this paper, the relations and distinctions between possibility measure, F-additive fuzzy measure and F-additive semi-continuous fuzzy measure([6]) are discussed in detail for the cases that $\operatorname{card}(X) \stackrel{?}{=} \aleph_{1}$. We show that the concept of possibility measure is weaker than the one of F-additive fuzzy measure and stronger than the one of F-additive semi-continuous fuzzy measure.

2. Definitions and assumptions

fuzzy measure is a set function $\mu: A \rightarrow [0, 1]$ with the properties:

$$(FM1) \mu(\emptyset) = 0;$$

$$(FM2) A \subseteq B \Longrightarrow \mu(A) \leq \mu(B);$$

(FM3)
$$A_n \in A$$
, $A_n = \mu(\lim_{n \to \infty} A_n) = \lim_{n \to \infty} \mu(A_n)$;

(FM4)
$$A_n \in A$$
, $A_n \downarrow \Rightarrow \mu(\lim_{n \to \infty} A_n) = \lim_{n \to \infty} \mu(A_n)$.

When μ satisfies (FM1), (FM2) and (FM3), we call μ a semicontinuous fuzzy measure.

Let $P(X) = \{A; A \subset X\}$, A possibility measure is a set function μ : P(X) \rightarrow [0, 1] with the properties:

(P1)
$$\mu(\emptyset) = 0$$
;

(P2)
$$A \subset B \Longrightarrow \mu(A) \leq \mu(B)$$
;

(P3) $\mu(\bigvee_{t \in T} A_t) = \bigvee_{t \in T} \mu(A_t)$, where T is an arbitary index set. We can easily prove thew following two propositions.

Proposition1 μ is a possibility measure iff μ satisfies (P1),

(P2) and

(P3)'
$$\mu(A) \leq \bigvee_{x \in A} \mu(\{x\}) \qquad \forall A \in P(X)$$

(P3)' $\mu(A) \leq \bigvee_{X \in A} \mu(\{x\}) \qquad \forall A \in P(X)$ Proposition2 A fuzzy measure or a semi-continuous fuzzy measure μ is a possibility measure iff μ satisfies (P3)'.

As a possibilitry measure μ is defined on P(X) and has F-additivity, i. e. $\mu(A \cup B) = \mu(A) \vee \mu(B)$, then if we want to discuss the relations and distinctions between possibility measure, fuzzy measure, semi-continuous fuzzy measure, we must assume that A = P(X) and fuzzy measure and semi-continuous fuzzy measure have F-additivity.

Throughout this paper, we assume that the fuzzy measure and

semi-continuous fuzzy measure are defined on P(X) and have F-additivity, and note

 $FM = \{\mu; \mu \text{ is a F-additive fuzzy measure on } P(X)\}$

PM = $\{\mu; \mu \text{ is a possibility measure on } P(X)\}$

SCFM = $\{\mu; \mu \text{ is a F-additive semi-continuous fuzzy measure}$ on P(X)

- 3. The relations between FM, PM and SCFM
- 3.1 X is an arbitary set

Theorem1 FM C SCFM, PM C SCFM.

Proof obvious.

3.2 Card(X) < %。

Let $X = \{x_1, x_2, \dots, x_n\}$, we have

Theorem2 FM = PM = SCFM

Proof. In [5] and [6], it is pointed out that PM
FM, then, from Theorem1, we only need to prove that SCFM
PM.

Let $\mu \in SCFM$, then, $\forall A \in P(X)$, $A = \{x_{\hat{c}_1}, x_{\hat{c}_2}, \dots, x_{\hat{c}_K}\}$ $(k \leq n)$, we have, by using the F-additivity of μ , that

$$\mu(A) = \mu(\{x_{\hat{i}_{1}}, x_{\hat{i}_{2}}, \dots, x_{\hat{i}_{K}}\})$$

$$= \mu(\{x_{\hat{i}_{1}}\}) \vee \mu(\{x_{\hat{i}_{1}}, \dots, x_{\hat{i}_{K}}\})$$

$$= \mu(\{x_{\hat{i}_{1}}\}) \vee \mu(\{x_{\hat{i}_{2}}\}) \vee \mu(\{x_{\hat{i}_{3}}, \dots, x_{\hat{i}_{K}}\}) = \dots$$

$$= \mu(\{x_{\hat{i}_{1}}\}) \vee \mu(\{x_{\hat{i}_{2}}\}) \vee \dots \vee \mu(\{x_{\hat{i}_{K}}\}) = \bigvee_{x \in A} \mu(\{x\})$$

Applying Proposition2, we know that $\mu \in PM$ and this ends the proof.

2.3 $Card(X) = N_0$

Let $X = \{x_1, x_2, \ldots, x_n, \ldots\}$, we have

Theorem3 FM C PM = SCFM

Proof. From Theorem1, it is sufficent to prove that SCFM \subset PM.

Let $\mu \in SCFM$, then, $\forall A \in P(X)$, (1) if card(A) $< \emptyset_0$, the conclusion follows by referring the proof of Theorem2; (2) if card(A) = \emptyset_0 , note A = $\{x_{\hat{l}_1}, \dots, x_{\hat{l}_n}, \dots\}$, there holds $\mu(A) = \mu(\{x_{\hat{l}_1}, \dots, x_{\hat{l}_n}, \dots\}) = \mu(\lim_{n \to \infty} \{x_{\hat{l}_1}, \dots, x_{\hat{l}_n}\})$ $= \lim_{n \to \infty} \mu(\{x_{\hat{l}_1}, \dots, x_{\hat{l}_n}\})$ $= \lim_{n \to \infty} \mu(\{x_{\hat{l}_1}, \dots, x_{\hat{l}_n}\}) \vee \dots \vee \mu(\{x_{\hat{l}_n}\}) \text{ (cf. the proof of Theorem2)}$ $= \bigvee_{n \to \infty} \mu(\{x_{\hat{l}_n}\}) = \bigvee_{n \in I} \mu(\{x_n\})$ Using Proposition2, we obtain that $\mu \in PM$, and then the proof

Using Proposition2, we obtain that $\mu \in PM$, and then the proof is complete.

2.4
$$N_o < \operatorname{card}(X) \leq N_1$$

We have

Theorem4 FM C PM C SCFM

In the proof of Theorem4, we consider that Cantor's continuum hypothesis is true, that is to say, $\mathcal{N}_{\bullet} < \operatorname{card}(X) \neq \mathcal{N}_{\downarrow}$ is equivalent to that $\operatorname{card}(X) = \mathcal{N}_{\downarrow}$. It must be pointed out that even we don't admit the continuum hypothesis, Theorem4 is also true, which will be explained at the end of this section.

Proof of Theorem 4 We suppose that $card(X) = \mathcal{N}_1$.

It is obvious that P(X) has only the operations " \bigcup ", " \bigcap " and " $_$ " of subsets of X and has nothing to do with the structures (algebraic, topological or ordered etc)defined on X, it is equivalent to say that we can endow any structure on X and this action has no inflence on our problem. At the same time, since $card(X) = \aleph_{\parallel}$, then there exists a bijection between X and interval [0, 1]. Then we may assume that X has the same structure of [0, 1] or we regard X = [0, 1] and prove Theorem4, this assumption is without any loss of generally to the proof. In the following, we assume that X = [0, 1].

From Theorem1, it only need to prove that FM

PM.

Let $\mu \in FM$, we show that $\mu \in PM$.

 $\forall A \in P([0, 1]), if \mu(A) = 0, then$

$$\mu(A) \leq \bigvee_{x \in A} \mu(\{x\})$$

and the conclusion follows.

If $\mu(A) > 0$, noting $A_1^4 = A \cap [0, 1/2]$, $A_2^4 = A \cap [1/2, 1]$, from F-additivity of μ , we have

$$\mu(A) = \mu(A_1^1) \vee \mu(A_2^1)$$

When $\mu(A) = \mu(A_1^4)$, take $A_1 = A_1^4$, otherwise, take $A_4 = A_2^4$, we have

$$\mu(A) = \mu(A_A)$$

Without any loss of generality, we suppose that $A_4 \subset [0, 1/2]$. Observing that $A_1^2 = A_1 \cap [0, 1/4], A_2^2 = A_1 \cap [1/4, 1/2],$ similar to above discussion, we can choose $A_2 = A_1^2$ (or A_2^2) such that

$$\mu(A_2) = \mu(A_1)$$

According to the same priciple, we can choose A_3 , A_4 , ..., A_n · · · , such that $\mu(An) = \mu(A)$, $\forall n \in N$, and $A \supseteq A_1 \supseteq A_2 \supseteq \cdots \supseteq$ ^A_ルコ・・・

Furthermore, from the process of choosing $\{A_n\}$, we easily know that $\bigcap_{n=1}^{\infty} A_n = \emptyset$ or there exists unique $\widehat{x} \in [0, 1]$ such that $\bigcap_{n=1}^{\infty} A = \{\tilde{x}\}.$

As $\mu \in FM$, we obtain that

$$\mu(\bigcap_{n=1}^{\infty} A_n) = \lim_{n \to \infty} \mu(A_n) = \mu(A) > 0$$

 $\mu(\bigcap_{n=1}^{\infty}A_n) = \lim_{n\to\infty}\mu(A_n) = \mu(A) > 0$ This implies that $\bigcap_{n=1}^{\infty}A_n \neq \emptyset$, i.e. $\bigcap_{n=1}^{\infty}A_n = \{\widetilde{x}\}$ and hence

$$\mu(A) = \mu(\{\tilde{x}\}) \leq \bigvee_{x \in A} \mu(\{x\})$$

and Theorem4 is proved.

Remark. If we don't admit the continuum hypothesis, we can embed X

into a subset of [0, 1](in the sense of above discussion) and prove Theorem4 according to the same process mentioned above.

- 4. Distinctions between FM, PM and SCFM
- 4.1 When card(X) $\stackrel{>}{=}$ \mathcal{N}_0 , we have FM $\stackrel{\neq}{=}$ PM We can define $\mu \in PM$ as follows:

$$\mu(A) = 1 \qquad A \neq \emptyset$$
$$= 0 \qquad A = \emptyset$$

but $\mu \notin FM$. In fact, as X is infinite, we can choose a contable subset $\{x_1, x_2, \ldots, x_n, \ldots\} \subset X$. Note $A_n = \{x_n, x_{n+1}, \ldots\}$, $\forall n \in N$, we have $A_n \downarrow \emptyset$, $\mu(A_n) = 1$, but $\mu(\emptyset) = 0$.

4.2 When $card(X) > N_o$, we have PM \neq SCFM We can construct μ ϵ SCFM as follows:

$$\mu(A) = 1$$
 $\operatorname{card}(A) > N_o$,
= 0 $\operatorname{card}(A) \leq N_o$,

but $\mu \notin PM$. In fact, $\mu(X) = 1$ and $\bigvee \mu(\{x\}) = 0$.

5. Conclusions

The results arrived at in the section 3 and 4 can be summaried below:

- (1) $Card(X) < N_0$: $(\mu \in FM) \rightleftharpoons (\mu \in PM) \rightleftharpoons (\mu \in SCFM);$
- (2) $Card(X) = \mathcal{N}_{i}$: $(\mu \in FM) \rightleftharpoons (\mu \in PM) \rightleftharpoons (\mu \in SCFM);$
- (3) $N_0 < \operatorname{card}(X) \leq N_1 : (\mu \in FM) \rightleftharpoons (\mu \in PM) \rightleftharpoons (\mu \in SCFM).$ where " \longrightarrow " and " \longrightarrow " mean "implies" and "does not implies" respectively.

References

- [1] L. A. Zadeh, Fuzzy sets as a basis for a theory of possibility, Fuzzy Sets and Systems, 1(1978)3-28.
- [2] M. Sugeno, Theory of fuzzy integrals and its appications,

- Thesis, Tokyo Inst. of Technology(1974).
- [3] A. Kandel, Fuzzy sets, fuzzy algebra and fuzzy statistics, Proc. of the IEEE 66(1978)1619-1639.
- [4] H. T. Nguyen, On fuzziness and linguistic probabilities, J. Math. Anal. Appl., 61(1977)658-671.
- [5] M. L. Puri and D. Ralescu, A possibility measure is not a fuzzy measure, Fuzzy Sets and Systems, 7(1982)311-313.
- [6] Z. Wang, Extension of possibility measures and generalization of fuzzy integrals(in Chinese), J. Hebei University, Vol4, No. 2(1984)9-18.
- [7] A. Levy, Basic Set Theory, Springer-Verlag, Berlin, Heidebery, New York, 1967.