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1. Introduction.

In this pesper we exsmine some connections between pointiess
pseudometric space theory as defined in Weihrauch and Schreiber [1981]
end Gerle [1990] and fuzzy set theory. In particuler, we consider two
pointless pseudometric spsces in wich the diemeters are energy snd
entropy functions, respectively. Recsll that o pointless pseudometric
spece, briefly p-p-m-space, is eny structure R=(R,s,5,I1) where (R,<)
is o partial order and I :.R—[0, =], 8:RXR-[0,«) s8re functions such thet,
for every x,y,z€R
Al X2y = Ixl2lyl ; A2  x:y = 8(y,2)28(z,%)

A3 8(x,X)=0 ; A4 5(x,u) ¢ 8(x,2) + 8(z,y) + 1zl .
- We coll regions the elements of R, inclusion the relstion ¢, distence
between two regions x snd y the number 8§(x,y) end dismeter of x the
humber Ixl. Notice that A2 is equivelent to say that § is symmetric and
decressing i.e. -

8(x,Y)=8(y,x) ;  xex', yy' = 8(x,y)<6(x"y")

From A1-A4 it follows thet if 8 region z is included both in x end y then
§(x,y)=0. In particuler, if x<y then 8(x,y)=0 end the existence of o
minimum in (R,<) entsils thet § is constantly equal to zero. So we assume
thet no minimum in R exists. If X end y ere bounded, i.e. x|z 8nd Iyl# e
we set e(x,y) = 8(x,y) + IXI/2 + Iyl/2. It is immediste that

e(x,y)=e(y,x) ; e(x,x)=Ixl ; e(x,y)e(x,2)+e(z,y) .
The theory of the p-p-m-speces generslizes the theory of the
pseudometric spaces; nemely, the pseudometric spasces sre the

s



P-p-m-spaces for which every region is ean stom with diemeter equsl to
zero (in this cese ¢ becomes the identity relation). We obtein @
p-p-m-space by setting R equsl to & cless of nonempty subsets of @
pseudometric space (M,d), < the inclusion relation end § end I | the ususl
distence and diemeter functions defined by

(1) 8(X,Y)=Inf {d(x,y)/xeX, yev} ; IXI = Sup {d(x,y)/xeX, yex} .
We call cenonicel eny space of this type. A cenonicel p-p-m-space is
furnished by intervel snelysis where R is the set of closed intervels of
the resl line.

The points in @ p-p-m-space R are defined as follows: we call @ Cauchy
sequence 8 sequence (p,),cN Of bounded regions such that

(2) Ve>0 3veN Yhavwkay e(py,py)<e,

Decressing sequences with venishing diemeters ere examples of Cauchy
sequences. Indeed in this cease 8(pp.,p)=0 for every h end k end (2) is

salisfied. Assume thst S is nonempty and define d:5xS—[0,«) by setting,
for every pair D=(pn)neN end q=(qn)neN of elements of S,
(3) d(p,q) = 1im e(p,,.,q,) ,

then it is easy to prove that (S,d) is 8 pseudometric space. We denote by
M(R)=(IP,d) the relsted quotient that is the metric spsce obtained 8s o
quotient of (S,d) modulo the relstion = defined by setting p=q if and only
if d(p,q)=0. So e point is s cless [pl={qeS/d(q,p)=0}, end d:IPKIP-[0,) is
defined putting d([pl,[q]) = d(p,q).

A different definition of point cen be obtained by confining ourselves to
the cless S; of decressing sequences of bounded regions with venishing

diemeters. We denote by M1(}2) the metric space so obtained. M,(R) is

different from M(R), in genersl. If R is ® metric space, then M(R) is its
completion, while M{(R) coincides with R, obviously. If R is the cenonical

P-p-m-space of the open intervels of the retionsl number set, then MI(R)

is equel to M(R) and both are equal to the resl line.



2. Fuzzy subsets in ® metric spoce.

In this Section we will extend the clessicel diemeter and distance
functions to the fuzzy subsets of & pseudometric space (M,d) (see Gerle
and Volpe [1986]). Let s end s' be two fuzzy subsets of M, ie. two
functions from M intoithe intervel [0,1], and set 1
(4) 8*(s,s')= fo S(C(s,oc),C(s',o:))do:. ; Isl*= foIC(s,a)ldoc.
where C(s,x) is the cut {xeX/s(x)2x} end § end I | ere defined by (1) .

Notice that the diemeter is an energy messure os defined in De Luca and
Termini [1972] and theat if d=Sup{s(x)As'(x)/x€M} then

8%(s,8")= [ 8(C(s,@),C(s"a))dax .

As ususl, we set s<s' provided that s(x)<s'(x) for every xeM.

Proposition 1. Let R be a class of nonempty fuzzy subsets of M, then
the structure R=(R,¢,6%,1 1*) defined by (4) is 8 p-p-m-space.

Proof. A1, A2 and A3 sre immediste. Let s,s', t be nonempty fuzzy
subsets, then by integrating both the sides of the inequality
8(C(s,«),C(s",a)) < 8(C(s,x),C(t,x)) + 8(C(t,x),C(s",&)) + IC(t, )l
we obtein A4. (]

Proposition 1 ensbles us to consider two interesting ceses of
p-p-m-spaces .

Fuzzy numbers. Recall that & fuzzy number is eny fuzzy subset
n:R-[0,1] of the resl line such thst every closed cut is ® nonempty closed
interval. Since the resl line is ® metric space, the class of fuzzy
numbers define ® p-p-m-space extending the spece of the interval
numbers. [t is interesting to observe thst the diameter of @ fuzzy
number n is fRn du . As an example, confine ourselves to the cless of

trisnguler fuzzy numbers "c,r where



(x-c+r)/r if c-rex<c ;
"cr(")= (c-x+r)/r if ceixec+r ;

0 otherwise.
Then there is no difficulty to prove that the dismeter of ne r is r end
lc=c'l = (r+r')/2 if  r+r'de-c'l ;

8(”c,r'”c',r')

(c-c")2/(2(r+r'))  otherwise.

Flou subsets. Consider the perticuler cese of the flou subsets, thet is
the cese in which the possible true velues sre 0,1/2 and 1. By identifying
esch flou subset s with the psir (C(s,1),C(s,1/2)) of the relsted cuts, the
p-p-m-space of Proposition 1 becomes 8s follows.

- R is 8 set of pair (E,F) with ESF and E nonempty ;

- (E,F)<(E',F') if and only if ESE' end FSF' ;
- 8*((E,F),(E',Ff))=1/2 [8(E,EN+8(F,F] ;

= I(E,F)I*=1/2(IEI+IF1).

3. Entropy, diesmeters, distances.

A rether general method to build up exemples of p-p-spaces in fuzzy
set theory is the following (see Gerle [1991]c). Let S be & set, A en
olgebrs of subsets of S, H:A—>R @ messure. As it is ususl, g cen be
extended to the cless M, of messursble fuzzy subsets of S by setting
u(s)=fsdu for everysin p, .

We call @ continuous p-p-m-spece in [0,1] eny p-p-m-space
([0,1],¢',8',1 I') such thet &' and | I' are messursble meps. Then it is
possible to extend <', 8' end I I' to 1, by putting, for every s,te,,
(5) st & s(x)<'t(x) ¥xeS ;  8(s,t) =u(8'(s,t)) ; Ist=u(Isl)
where 8'(s,t) and IslI' sre the fuzzy subsets defined by
(8'(s,1))(x)=8'(s(x),t(x)) end Isl'(x)=Is(x)I".



Proposition 2. Let u be & probsbility messure on S, 11, the class of
messureble fuzzy subsets of S end ([0,1],¢<',8',]1 I') @ continuous
p-p-m-speace. Then the structure (1,,¢,8,1 1) defined by (5) is o
p-p-m-space.

It is not too difficult to find exemples of continuous p-p-m-spaces. As
on exemple, very interesting spesces ore releted with the notions of
sharpness reletion and of entropy (De Luce and Termini [1972]). Recall
thet the sharpness relstion <g is en order relstion in [0,1] defined by

setting x<gp if 8nd only if

B<1/2 = «<p and B>1/2 = 2.
This relation is extended to the clsss F(S) of fuzzy subsets of S by
setting f <5 g provided thet f(x) <5 g(x) for every xe€S. The maximum

in F(S) with respect to ¢g is the completely undefined fuzzy subset

i:X-[0,1], i.e. the fuzzy set such thet i(x)=1/2 for every x€S. The stoms
coincide with the clessicel subsets of S. An entropy is @ map h: F(S)-[0,1]
increesing with respect to ¢g Such that e(i)=1 snd e(s)=0 for every

classicel subset s. The entropies sre messures of the degree of
fuzzyness of the fuzzy subsets.
Now, ® continuous p-p-m-spaces in obteained by setting <' equel to the

sharpness relstion, Ilx!|'=2-(xA~c) and

avp-aAg if aap<1/2<avp

8'(ax,p) =

0 otherwise.
The related p-p-m-space is & space of fuzzy subsets such thet
- the inclusion relstion is the sherpness relation;
- the distence between two fuzzy subsets is the messure of the
simmetric difference : 8(s,s")=u(svs') ;
- the dismeter is the well known entropy : Isl =2u(sA~s")
- the points coincide with the clessical subsets.



This space generslizes » well know pseudometric spaces associated to o
meossure space (A,u). Nemely it is well know thet, given ® measure space
(A,W), the equality d(X,Y)=u(XVY), where XVy=(X-Y)u(Y-X)=XuY-XnY is the
symmetric difference, defines in A ® structure of pseudometric space
(A,d).

4. First order theories and pointless spaces.
In the case of the flou subsets, the p-p-m-speces of Proposition 3 are
defined 8s follows.
- R is the cless of flou subsets (E,F) with E€A-{g} and Fe A ;
- (E,F)<(E',F") if and only if E'SE and F<F' ;
- 8((E,F),(E"F))=u(EUE'-FnF") ;
- I(E,F)I=u(F-E). _

An interesting cless of flou subsets of the set F of sentences of o first
order lsngusge £ is obteined by the theories of £ . Recall that » theory
is any consistent set T of sentences closed with respect to logical
deductions. Indeed it is very neturel to essociste to every theory T the
flou subset (T,c(T)) where c(T) is the set of sentences consistent with T.
In other words, we assign the value 1 to the proveble formules, the value
0 to the disproveble formules end 1/2 to the undecidable formules.

In order to semplify the meatematicel trestment, we prefer to
substitute F with the Lindenbsum algebrs B and therefore to identify @
theory T with @ filter end consequently c(T) with {xeB/ ~x¢T }. Moreover
the messures in B can be introduced 8s follows.

We cell ® weight eny function r:B - [0,1] such that
(6) 3qep M@=t and r(0)=0 ;

ond we interpret r(«) as the degree of importasnce of the sentence «.
As ususl, 8 messure W:#(B)-[0,1] is obtained by setting, for every
subset X of B, u(X)=Za€x r(e). We call relevent every sentence « such

thet r(a)#0. We sey that two theories T and T' fight over the sentence
a, provided thet either c€T and 7«x€T' or 7x€T and «x€T'. We say thet «



decideble in T, if either «€T or nxeT.
Coming beck to the p-p-m-spaces, it is immediate to prove the
following proposition.

Proposition 3. Let G be & cless of theories and set
(7)  8(T,T")= 2 {r(«)/ T end T' fight over «} ;
ITI = 2 {r(«) /« is undecideble in T} ;
T<T' & T'sT
then (G,¢,8,1 1) is ® p-p-m-space.

The number ITI represents, in 8 sense, the smount of (relevant)
informations contsined T; indeed, if ITI=0 then @11 the relevent sentences
ore decidable in T while if ITI=1 then no relevent sentence is decidable in
T. Likewise §(T,T') is ® messure of the contrest between T and T' and if
8(T,T')=0 (8(T;T')=1) then T and T' agree (disagree, respectively) in a1l the
relevant sentences. In Gerles [1991]b the p-p-m~-spaces so obtsined sre
used in connection with Popper's verisimilitude question.
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