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ABSTRACT:

We propose a new parameterized method for the defuzzification process based on the
simple M-SLIDE transformation. We develop a computationally efficient algorithm for learning the
relevant parameter as well as providing a computationally simple scheme for doing the
defuzzification step in the fuzzy logic controllers. The M-SLIDE method results in a particularly

simple linear form of the algorithm for learning the parameter which can be used both off and on
line.

1. Introduction

Recently with the intensive development of fuzzy control[1, 2], the problem of selection of a
crisp representation of a fuzzy set, defuzzification, has become one of the most important issues in
fuzzy fuzzy logic. In [3, 4] it was shown that the commonly used defuzzification methods,Center
of Area (COA) and Mean of Maxima (MOM) [1, 2], are only special cases of a more general
defuzzification method, called Generalized Defuzzification via BAsic Defuzzification Distribution
(BADD). The BAD Distribution vj, i=(1, n) of a fuzzy set D with membership function D(x;) = wj,

wj € [0, 1], is derived from its possibility distribution by use of the BADD transformation:
o
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The BADD transformation converts the possibility distribution w; to a probability distribution Vi, in

a manner that preserves the features of D w; > wj=>vi2vjand wj = Wj = vj =vj. For a =1 the
BADD transformation converts proportionally the possibility distribution wj, i=(1, n) to BAD
distribution vj, i=(1, n), for a > 1 it discounts the elements of X with lower grade of membership
wj. Through parameter o the BADD transformation relates the probability distribution v(x) to our

confidence in the model [3, 4]. An increasing of o is associated with a decrease of uncertainty,
decreasing of entropy and an increase in confidence. The defuzzified value obtained via the BADD
approach is defined as the expected value of X over the BAD distribution vj, i=(1, n):
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It is evident, that for fixed ., the defuzzified value dBADD | minimizes the mean square error, E{(x
- dBADD)2} ' Thus the BADD defuzzified value is the optimal defuzzified value in the sense of

minimizing the criterion
2. (x; - gBADDY2p, 3).
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The main conclusion of this approach was that the best defuzzified value in the sense of
above criterion can be obtained by adaptation of parameter o. by learning. Unfortunately the
problem of learning the parameter o from a given data set using directly expression (2) is a
constrained nonlinear programming problem and its solution is not appropriate for in real control
applications. In this paper we solve the learning problem by the introduction of new transformation
of possibility distribution w;, i=(1, n) to probability distribution vj, i=(1, n), called the Modified
Semi LInear DEfuzzification (M-SLIDE) transformation. The introduction of this new

transformation results in a simple linear expression for the defuzzified value. An algorithm for
learning of the parameter is proposed.

2. M-SLIDE Defuzzification Technique

Let the probability distribution u;, i=(1,n) be obtained by the proportional transformation
(normalization) of wj ,

y=cwj= ;w‘— »  i=(1,n). 4)
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The following transformation of the probability distribution uj, i=(1,n) to a probability distribution
v}, i=(1,n) is defined as the M-SLIDE Transformation:

Li-a 'B,),Z uj if ieM
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where m = card(M) is the cardinality of the set M of elements with maximal membership grades:
M = (i, wj = max , i=(1, n)}
The derivation of the M-SLIDE transformation is expressed in detail in Yager & Filev [5]

The following theorem [5] shows some of the significant properties of the probability
distribution obtained via the M-SLIDE transformation.

Theorem 1: Let wj, i=(1,n) be the possibility distribution of a given fuzzy set and let v, i=(1,n)
be obtained by application of transformations (4) followed by (5). Then it follows:

i. distribution vj, i=(1,n) is a probability distribution; )

il. wj = wj = Vi=Vj, V i,j=(1,n)  (identity);

iti. wj > wj = Vj 2 Vi V ij=(1,n) (monotonicity)

iv.p=0 = vj= nwi , i=(1,n);
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v. =1 = v;j=0, ieMandvi=—1—, ie M.

An immediate consequence otm Theorem 1 is that the entropy of the M-SLIDE Distribution v;,
is maximal for B = 0 and minimal for = 1.

When using the M-SLIDE transformation to obtain the probability distribution vj the
expected value,d, with respect to the elements x; of support set is
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where dMOM is the MOM defuzzified value,
MOM_ L .
gMOM m z X5
€M
It is evident that expected value d generalizes the MOM defuzzified value.

Definition 1. The process of selection of a deterministic value from the universe of discourse of a
given fuzzy set by evaluation of the expected value d is called the Modified Semi LInear

DEfuzzification (M-SLIDE) Method. The defuzzified value, denoted dMS, obtained by application
of the M-SLIDE method is called the M-SLIDE value and is defined as

dMS = (1-B) 2 u; (xj - IMOM) 4 gMOM.
ieM
The next Theorem shows the relationship between the M-SLIDE method and the commonly used
COA and MOM defuzzification methods.

Theorem 2. The M-SLIDE method reduces to the COA defuzzification method for B = 0 and to
the MOM defuzzification method for § = 1.
Proof. For f =0 ‘
dMS = 2 uixi+-r13 m Umax Z Xj = 2 C Wj Xj + C Wmax 2 X;
ieM jeM ieM jeM
dMS = TL— Z Wi Xj + Wmax 2 x =dCOA
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where by dCOA we denote the defuzzified valued obtained by the COA defuzzification method.
For B = 1, dMS = gMOM,

Theorem 3. The following expressions of the M-SLIDE defuzzified value, dMS, are equivalent:
dMS = (1-B) 2 yj (x; - IMOM) 4 qMOM
€M
dMS = z u; (AMOM _ &) + dCOA
ieM
dMS _ 3 {MOM . (1. gy gCOA
dMS = g (dMOM . COA) 4 JCOA
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Theorem 3 provides convenient forms for the M-SLIDE defuzzified value as a linear

function of the parameter 8. In the next section we will use these forms for estimation of the
parameter f in a learning procedure, capable of working on line.

3. Algorithm for Learning the M-SLIDE Parameter

In this section we solve the problem of learning the parameter 3 of the M-SLIDE method
from a given sequence of fuzzy sets and desired defuzzified values. Furthermore we demonstrate
that the M-SLIDE method can be used as an approximation of the Generalized Defuzzification
Method via the BAD Distribution [3].

Assume we are given a collection of fuzzy sets Uy and the desired defuzzified values dy,
k = (1, K). We denote by dffOM and dEOA the defuzzified values of the fuzzy sets Uy under MOM

and COA defuzzification methods. The problem of learning of the parameter P is equivalent to the
recursive solution of the set of linear equations: B * (df:’loM - dEOA) + dEOA =dg ,k=(,K).

For simplification we denote: ¢, = dffOM - dEOA and yy =d - dEOA and rewrite the set of equations
that has to be solved in the form: cg B = yx fork = (1, K).

In general there is no guarantee that this set of equations can be exactly satisfied for some
value of P and also that ci doesn't vanish for some k. For this reason we seek a least squares

solution of the set of equations under the assumption of noisy observation data. The solution of this
classical mathematical problem can be obtained by the application of a number different techniques .
In this paper we shall use an algorithm that is a deterministic version of the well known Kalman
filter [6] which is usually used to solve the same kind least squares of errors estimation problem for
the case of dynamic systems.

The unknown parameter P that has to be estimated is regarded as a state vector of a
hypothetical autonomous scalar dynamic system driven by the equations



Bk+1 = Bk and yi = ci Bk + &k
where the term &g denotes Gaussian white noise with covariance r.. Then the recursive Kalman
filter that gives the best estimate of the state vector By of this system has the form [6]:

Bi/k = Bx/k-1 + gk (Yk - Sk Bk/k-1) i

Br+1/x = Br/k i

Pk/k-1 = Pk-1/k-1 i

8k = Pk/k-1Ck = 1 ‘ iv
Ck Px/k-1 + Ik

Pk/k = Pk/k-1 - 8k Ck Pk/k-1 v

Roughly speaking the Kalman filter calculates at every step the best estimate of the state vector as a

~~

sum of the prediction of P at step k from its value at step k-1, Bk/k-1, and a correction term

proportional to the difference between current output value yy and predicted output cj Bk/k-1.
Equation iv calculates the varying gain, gk, of the filter. The evolution of error covariance is given

by equation v. Because of the static nature of the autonomous system B, 1 /k = Bx/k = Bk and
Pk/k-1 = Pk-1/k-1 = Pk-1 this significantly simplifies the algorithm to

Bk=Bk-1 + gk (¥k - ¢k Bk-1) (vi)
gk =Pk-1 Ck 5 ——— (vii)
Ck Px-1 + Tk
Pk = Pk-1 - 8k ¢k Pk-1 (viii)
by combining vi and vii a more compact form of the algorithm is obtained
Bx= Bi-1+Pk-1 ck 5——— (K - Ck Bk-1) (ix)
¢ Pllc-l + I
Pk =Pk-1-PE1k5—— (x)
Ck Px-1 + Ik

Because usually we have no idea about the magnitude of the additive noise Ex we shall
consider ry = 1. Then equation (x) is further simplified and we receive the following final form of
the Kalman filter algorithm for recursive least square solution of the original set of equations :

.1 C .
Bi= Bi-1 + 2L (yy - i Bi.1) xi
cEpk1+1
pk = pk-l xii
C% Pk-1 +1

Regarding the initial conditions, it can be argued [7] that a reasonable assumption is to
consider B = 0 and nonnegative p.



The algorithm gives an unconstrained solution for . Because of the requirement of
" belonging to the unit interval, we shall restrict the solution By by applying a threshold to give the

value B; where
1 ifﬁk_l +Ac>1
*

By = 0if B + A <0

Bx.1 + Ax otherwise _
where Ay denotes the second term in the right part of xi,

Pk-1 Ck (
————— (¥k - ¢k Bk-1)-
fpeg + 1

The thresholding effect can be replaced by the following nonlinear expression:

B]’: =1-05[1-0.5 Bx.1 + AcHBr1 + ALl) +11-0.5 (Bk-1 + A+ IBr.1 + A 1]
The algorithm for learning the M-SLIDE parameter, based on Kalman filter, can now be
summarized in the following.

Algorithm for learning the parameter § (M-SLIDE Learning Algorithm)
1. Set Bp=0; pg>0.

2. Read a sample pair Uy, di.

3. Calculate: . df'OM; ii. d{O4; iii. ¢ = MM - gSOA; iy, y, = d, - dCOA

1€
4. Update By, pk: Bk= Pk-1 + —ZPLL“—I (Vk- ok Bk-1)and pg= Pkl

cf Px-1 + cf pxy + 1

A =

5. Calculate B; :

Bk = 1-0.5[1-0.5 (B + ActBes + Agl) +11-0.5 Bt + At By + Agl) 1]
6. Update the current estimate of the parameter B: B = B;.

We note that since the estimate of the parameter B is determined sequentially there is no need
to resolve the whole the set of equations when a new pair of data pair (Uk+1> dg+1) becomes

available for learning. The addition of a new data pair can be incorporated by just an additional
iteration of the algorithm. This property of the algorithm allows it to be used for either off-line or

on-line learning of the parameter B.
In the case when the desired defuzzified values, the dy's, are the defuzzified values
obtained from the defuzzification method using the BADD distribution, the Algorithm can be used to

get an associated M-SLIDE parameter 3 corresponding to a BADD transformation parameter o.

The next example presents an application of the M-SLIDE learning algorithm.
Example. Assume our data consists of 10 fuzzy sets:

Uy = {0/3, 0.6/4, 1/5, .8/6, 0.9/7, 0/8}; Uy = {0/5, 0.9/7, 1/9, 1/11, 0.2/12, 0/13};
U3 = {0/2,0.4/3, 0.8/4, 1/5, 0.5/6, 0/7}; Uyg = {0/4, 1/5, 0.9/6, 1/7, 0.9/8, 0/9};
Us = {0/6,0.3/7, 1/8, 0.6/9, 1/10, 0/11}; Ug = {0/3, 0.2/4, 0.9/7, 1/9, 1/10, 0/12};
U7 = {0/1, 0.9/4, 0.5/5, 1/1, 0.4/8, 0/10}; Ug = {0/3, 0.5/7, 0.9/10, 1/11, 0.4/14, 0/16};



Ug = {0/5, 0.2/6, 1/7, 1/9, 0.1/10, 0/11}; Uyq = {0/4, 1/7, 0.5/8, 1/9, 0.7/10, 0/11}.
We used the BADD defuzzification method to generate the ideal defuzzified values, dk,

associated with each of these fuzzy sets. In this way we formed six different data sets, each
consisting of 10 pairs (U, di) In each data set the dy's where generated by a different BADD

parameter Q..

For each data set, using the M-SLIDE learning algorithm, we obtained the optimal estimate
for the parameter . The following tables show the results of the experimentation with our
algorithm. In the tables below we note that di is the ideal value and df is the calculated

defuzzification value using the M—SLIDE defuzzification procedure with the optimal estimated B
parameter for that data set.

DATA SET #1 OPTIMAL ESTIMATED f = 0.00022
k 1 2 3 4 S 6 7 8 9 10

dy 560 926 459 647 879 842 582 1039 791 8.43
dg 560 926 459 647 879 842 582 1039 791 843

DATA SET #2 OPTIMAL ESTIMATED  =0.10758
k 1 2 3 4 5 6 7 8 9 10

di 554 934 464 642 882 854 595 1046 7.92 8.39
dy 571 921 470 642 898 882 576 1046 7.99 828
DATA SET #3 OPTIMAL ESTIMATED B = 0.22539
k 1 2 3 4 5 6 7 8 9 10
di 547 943 468 637 884 866 609 1053 7.93 834
de 572 932 477 637 900 893 58 1058 8.00 8.15
DATA SET #4 OPTIMAL ESTIMATED § = 0.66891
k 1 2 3 4 5 6 7 8 9 10
di 520 975 487 616 893 9.14 661 1080 7.97 8.14
de 536 972 497 617 9.00 927 649 10.83 8.00 8.00
DATA SET #5 OPTIMAL ESTIMATED § = 0.92394 .
Kk 1 2 3 4 5 6 7 8 9 10
di 505 994 497 604 898 942 691 1095 7.99 8.03
de 508 994 500 604 900 945 688 1096 8.00 8.00



DATA SET #6 OPTIMAL ESTIMATED B = 0.97293
k 1 2 3 4 5 6 7 8 9 10

dy 502 998 499 601 899 947 697 1098 8.00 8.01
dy 503 998 500 601 900 948 696 1099 8.00 8.00

It is can be seen from the above example that the M-SLIDE learning algorithm learns values of the
parameter B that allow a very good matching of the data set.
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