Management of Statements
in Frame Interpreter of CC_SHELL

Wojciech CHOLEWA, Ernest CZOGALA
Technical University, Gliwice, Poland

Abstract

CC_SHELL is an expert system shell that can handle several kinds of uncertain data and knowledge
simuitaneously. The processing of such information is based on the fuzzy logic, possibility theory, as well
as frames for statement representation. Thp shell is composed of the fuzzy production system, frame
interpreter and tools for programmers. In this paper we shall focus on the application of frame interpreter
for the management of statements in CC_SHELL.

Keywords: expert system shell, approximate statements, frame, object oriented programming.

1. Introduction

It has been assumed that a knowledge base is a collection of statements describing relationships
between entities of the real world as well as abstract concepts. Such staternents are variously called
sentences, clauses, formulas and most often facts. Of course from the direct use of the notion fact there
may result a lot of misinterpretations, because the particular statements are not independent, real
existing facts - they are only some belief that something has happened or has been done.

USER

External Interfaces

©00000000000000000000000| 000000000000 |0000]|]000000000000000000C

e oo |00 000 s s s 0000000

FMIEXCF: : : VV_SHELL:
1/0 Mk Y 1/0
i Fuzzy : :
SECE R el R [P
bebugging 44 : : :
©o Approximate Statements Debugger

Knowledge Base LISpP-like Frame

Description Description
Language Language
PASCAL C++

620000000000 0000000000000000Re00008e O

©
.
.
.
L]
L]
.
.
L]
:
L]
and :
L4
.
.
.
L]

esceessssssnes
ss0eveccvcsene

LI I I I A IR I IR B B I R I S A I S ® s e 0 e 0000000000000 00r0 00

MS-DOS

00C000000000000000000

00
00

Fig.1. The general structure of CC_SHELL.

The aim of this paper is to show, how statements are managed in an expert system shell. The general
structure (Fig.1) and features of CC_SHELL have been discussed in a separate paper.

2. Statements and frames

A common way to represent statements is an object-attribute-value triple used, eg., in a pattern expert
system MYCIN [9] dedicated to medical applications. Attributes are general characteristics of properties
possessed by objects. The value specifies the particular nature of a property in a given situation. Of
course, the sets of such triples are flat (they contain no underlying structure) and the maintenance of
great sets is strongly difficult. A dozen of different idea of structuring the knowledge base has been
proposed and implemented. Very important is the idea of frames. It is an example of object-oriented-
programming, which makes it possible to generalize, classify and generate abstractions.

The notion of frames was introduced by Minsky [8] (see also [1] and [7]). His basic goal was concemed
with the designing of a data-base containing encyclopedic knowledge, needed in commonsense
reasoning. Frames offer high computational efficiency. They are an interesting tool for the designing of
interfaces with users and with external sources of data (eg. measuring devices).

2.1. Frames in CC_SHELL

CONTEXT ctx_name
FRAME fra_name
SLOT slo_name
FACET fac_name <value>|<demon>
FACET fac_name <value> | <demon>

SLOT slo_name
FACET fac_name <value> | <demon>

FRAME fra_name
SLOT slo_name
FACET fac_name <value>| <demon>

Fig.2. Elements of a frame.

A frame is a description of a real or an abstract object. It is a special form of data and code structure.
A frame contains slots representing attributes of the object. Slots may be interpreted as special
representations of statements. Slots contain facets connected with values, default values and/or
procedures (called demons) by which the values may be obtained (see Fig.2). It is important to point out
that each facet can contain values or demons. Such an inclusion of demons in frames joins procedural
and declarative representations.

Examples of demons included in frame interpreter of CC_SHELL [4]:

. frame processing demons
(CopPY fac), (DEL fac), (FIX fac val), (GET slo), (SET val fac),
(VIEW slo), (VIEW_FIX slo), .

. task arranging demons

(EXIT errlev), (GOAL val . . .), (IF cond vall val2),
(RUN_GOAL ctx), (WHILE cond val),

. list processing demons

(HEAD 1st), (SEL lst pos), (TAIL 1lst), . . .
. uncertainty processing demons

(X_AGR sa sb), (X_AND sa sb), (X_IMP sa sb), (X _NOT sa sb),
(X OR sa sb), . . .

. user interface demons
(CONFIRM txt), (DISPLAY vall val2 ...), (PROMPT typ vall val2),

All the elements of frames are identified by their names. The names ought to be locally unique. It means,
eg., that all slots in a given frame ought to posses individual, different names. Global uniqueness of
names is not required, i.e. we can set the same name for slots in different frames. Such an assumption
results in a polymorphism - the names are shared and their meaning depends on the given context.

2.1.1. Inheritance

Frames may be arranged in hierarchical structures (see Fig.3, Fig.4) which make it possible to develop
and process the idea about classes without being disturbed by details of any particular object. Such
structures are given by links called AKO (a kind of) between superframes (parent frames) and subframes
(derived frames). In CC_SHELL such links are listed as follows:

FRAME SubFrame 1 /* see Fig.3 */
SLOT ako
value = (Frame)
FRAME Frame /* see Fig.4 */
SLOT ako
value = (SuperFrame_l SuperFrame 2 SuperFrame 3)

SuperFrame
AKO +
Frame
f L 1
RKO A . : AKO 4
SubFrame 1 SubFrame_2

Fig.3. Simple hierarchies (there exists at most only one superframe for each frame).

Searching for a slot value for a frame is the basic task in frame systems. Special properties are assigned
to the facets: value, if_needed, if_added and if_removed. The slot value is assigned to the facet value.
When we are looking for the value of the slot, the content of the facet value is returned. If such a facet
is missing, the facet if_needed points to the value or to a demon returning the value. Siots that are not
present in a frame are inherited from superframes. Searching returns alternatively:

) a list containing values of the same slots in all superframes,

. only the first value is found; this value can override values in other superframes.

inheritance is the most important feature of frames, which makes it possible to eliminate a redundancy
of data and to handle exceptions. it can also be used to generate reasonable default data or

assumptions in the case of incomplete information. Special facets, such as if added and if needed may
be applied for forward and backward chaining, respectively.

Simple hierarchy results in a tree structure of frames (see Fig.3). For such structures a search path is

SuperFrame 1 SuperFrame_2 SuperFrame_3

1 T |
AKO a AKO a AKO ?

l L

Frame

Fig.4. Multiple inheritance (each frame can posses a few superframes).

given by the AKO links, starting from the selected node upwards and search time grows, at worst,
linearly with the number of nodes. More advanced muiltiple inheritance results in a directed acyclic graph
(see Fig.4), for which the strategies for depth first or breadth first searching ought to be applied, where

. the results depend strongly on the arrangement of superframes,
. search time grows, at worst, exponentially with the number of nodes,
. redundant searches may be expected (for depth-first search).

2.1.2. Encapsulation

Encapsulation is a property postulated by object-oriented-programming. It states that data structures
and procedures which are to manipulate the data ought to be coupled together and isolated to some
degree from direct access by other procedures. The frames enable us to control the degree of
encapsulation. This is achieved by the use of demons (making no difference between data and code)
and by the following two possibilities for the pointing of a slot:

. slot may be pointed out by its name,

. slot may be pointed out by its qualified name, i.e. by the pair composed of the name of the slot

and the name of a frame to which this slot belongs.

In the first case we obtain an access to the siot (for which we are looking) in the current frame. In the
second case access is obtained to a particular slot in a given frame. This allows us to use some slots
as global and some slots as local (private) ones. In both cases all the assumptions about the inheritance
are valued.

2.2 Rules

Mathematical logic was one of the first formalism that was proposed Tab.l. Definition of implication;
as a representation of knowledge. The inference in logic is T=true, F=false.
connected with the notion of implication. If p and q are given

statements, then the implication p-q is true when q istrue or p 5
is false (see Tab.l). Implication p-q is often written as follows P 1 Ll

if [V] T | T T

if p then q T F F

F T T

F F T

To provide an appropriate explanation facility, the knowledge base
ought to contain the rules in an extended form

if p then g because explanation @

Classical logic uses two basic patterns for the deduction in propositional calculus:
. modus ponens (rule of detachment) - for statements p and q, if the rule p-q istrue and p

is true, then q is true, too; we can express this in the following form

p-q rule :
p premise 3
q conclusion

. modaus tollens (rule of contrapositive) - for statements p and q, if therule p~q istrue and q
is false, then p is false; this can be written down in the following form

p-q rule
~q premise)
-p conclusion

If we know only that p is false (or respectively that q is true) we are not able to arrange a reliable
inference about the logical value of q (or respectively p). A lot of misunderstandings is connected with
the interpretation of the implication. It is necessary to point out that the implication p-q doesn't state
that g follows from p ; eg. both implications

(@2>1)-@3>0 and (2<1) - (3>1)

are true (compare Tab.l). Moreover it is important that we can draw reasonable conclusions only when
the implication is true, because from the assumption that the implication p-q is false it follows only that
p hastobetrue and g has to be false. From the last remark it follows that the knowledge base ought
not to contain the rules in the form

Itis nottrue thatif p then q.

The conditional part (left-hand side) of a rule may include the composed statements. In pure logic it is
enough to consider only two kinds of such a composition, namely the conjunction (p = p4 AND p2) and
disjunction (p = p4 OR p2). In each real application of expert systems we can easily obtain a situation
where the logical value of a statement results independently from several statements (eg. opinions of
different experts). Although it seems to be a case of redundancy in expert systems, we are not allowed
to reduce this kind of overloading, because designing the knowledge base we don't know which sources
of information will be available for the user. In such circumstances the conjunction and disjunction are
irrelevant operators and we have to introduce the next one called aggregate (p = P4 AGG py). The
properties of such an operator have been discussed eg. in [2].

The rules contained in the knowledge base can be driven forward (activated) from those statements that
we know to be true towards unknown statements or they can be driven backward from the statements
(hypothesis) that we wish to establish to the statements necessary to prove their truth. It is important to
make a clear distinction between forward/backward chaining of rules and forward/backward solving
strategies used by the expert system (forward/backward reasoning). In addition to distinguishing
between forward/backward chaining and reasoning, we also need to distinguish between depth-first and
breadth-first search of rules in a knowledge base.

It seems today that experts can express most of their problem-solving techniques as a set of condition-
action rules. Rules "if premise then conclusion® can be very easily extended into production rules *if
condition then action®. Such rules provide an extremely powerful model of human thought and allow us
to represent the knowledge about how to carry out our reasoning.

3. Approximate statements

Knowledge base resuits from the experiences of experts. It is not given in a rigorous form and we often
have to deal with rules which are true in most (but not all) cases. it means that statements and rules in
such applications are often uncertain and/or imprecise. Approximate statements can be represented in
a lot of different ways, where certain rules and certain statements can always be taken into account as
special cases of an approximate one. Several ad hoc approaches, empirical and theoretically based, to
represent approximate statements and rules are known (see eg. [6], [10], [9]).

T(p ~q)
T(q)

1 T(p)

Fig.5. Two-valued implication.

The simplest approach is the direct application of the probability
theory and Bayesian standard model. A modification of the
probability theory results in the truth values T(s) from the range [0,1]
(or [-1,1]), assigned to each of the statements. They are interpreted
as an extension of two logical values NO=0 and YES=1, onto the
ordered set [0,1] of real numbers. Particular implementations differ
mainly in the interpretation of the value T(s)=0, which can point out
statements that are false or which can point out only statements for
which we haven't got any source of information that they are true.
The last case doesn’t mean that there exist any reasons to interpret
such statements as false.

For reasoning by means of truth value we need an extension of implications. The two-valued implication
defined in Tab.l is shown in Fig.5. In order to extend the definition into a definition of continuous
implication, which is necessary to deal with truth values T(s)€[0,1], we have to define a surface (a
function) spanned on the points shown in Fig.5. Some examples are (see Fig.6):

Tp-q) = if T(p) <T(q) (5)
p=q) = T(g) otherwise
T(p-q) = max(1-T(p),T(q)) - ©
T(p-q) = min(1-T(p)+T(q),1) ' @)
T(p »q)
T(q)
1
© T
o 1 (p)

: b. C.

Fig.6. Examples of implication: a) (5), b) (6), ¢) (7).

On the basis of such implications we can generalize the modus ponens and modus tollens (see eg. [6]).
3.1. Belief and disbelief

The first well-known expert system (designed for medical applications about 1972) which uses uncertain
statements and uncertain rules is MYCIN [9]. For a given evidence e (reference statement) and
hypothesis h (statement to be evaluated) MYCIN introduces the following three measures:

. measure MB(h,e) of belief in the hypothesis h,

. measure MD(h,e) of disbelief in the hypothesis h,

. certainty factor CF(h,e) considered as a truth vaiue of the hypothesis h, and indicating a
predominance of confirming (positive value) or predominance of opposing (negative value)
evidence.

Measures of belief and disbelief are interpreted as some kinds of conditional probability, where

MB(=h,e) = MD(h,e) ()]

CF(h,e) = MB(h,e)-MD(h,e))

MYCIN uses the following formulas

MD(hy Aho,e)
MB(hqAho,e)
MD(h4 Vho,e)
MB(h{ Vho,e)

max(MD(h,e), MD(h,e))
m n(MB(h1 .e), MB(h2,e))
m n(MD(h1 .e), MD(h2,e))
max(MB(h1 8), MB(hz,e))

! (10)
i

Most interesting is that MB(h,e) and MD(h,e) allow us to take into account separately all the premises
pro and contra and we can distinguish between two cases:

. we haven't got any sources of information about the logical value of the hypothesis,

. known premises pro are compensated by known premises contra.
We are not able to make such distinctions when we use only a single value (eg. truth value) assigned
to the statement, because the value T(s)=0.5 maps both these cases.

3.2. Possibility and necessity

An interesting modification of reasoning patterns was obtained by means of modal logic. The notions
of possibility and necessity form a concept for the measures of possibility II(s) and necessity N(s),
assigned to statements. Leaving out a rigorous explanation the values of these measures may be
interpreted as boundaries of a hypothetical range for the unknown truth value

0 < N(s) < T(s) < I(s) < 1 (1)

By means of N(s) and II(s) we can distinguish the case of compensated premises pro and contra
N(s)=II(s)=0.5 from the case with a lack of information N(s)=0 and II(s)=1. Some extensions of modus
ponens and modus tollens were proposed (see [6]):

N(p-q) = a
N(p) b (12)

N(q) = min(a,b)

N(p-q) > a
1(q) < b (13)

II(p) < max(1-a,b)

Fig.7. Plot of an approximate statement: a) certainly NO, b) perhaps NO, c) maybe NO, d) maybe
YES, e) perhaps YES, f) certainly YES.

The result of reasoning obtained with the use of possibility and necessity may be mapped on the
diagram in the form of a triangle (see Fig.7). Such a diagram allows us to introduce linguistic descriptions
for the selected pairs of values (N,II). This simplifies the dialogue with users because verbal descriptions
of certainty are more user-friendly than numbers.

3.3. Bilateral implication

The idea of bilateral implication resuits from technical diagnostics, where a lot of examples of
dependencies between the state of an object and features of diagnostic signals exists. They can be
interpreted as the following ordered relations:
from the known state follows a special property of the signal
Of course we are not able to use such a relation directly for robust reasoning about the state of the
object on the basis of known properties of signals (it is the main task in technical diagnostics) because
it is highly possible that the same special property of a signal follows from some other state of the object.
Moreover we often have no reason to assume that the discussed relation is a causal relation. The
simplest way to represent correctly all cross-dependencies is to write the relations in such a form that
both modus ponens and modus tollens may be applied together. This can be done by means of bilateral
implication [3]. The bilateral implication p=q is simply a pair of both underlaying implications p-g and
g-p . The implication has to be symmetric for modus ponens and tollens because the result of reasoning
ought to be independent from particular forms of basic statements:
. statement 1: object X has the property A,

. statement 2: object X has the property A,
and questions sent to the user.

The notion of necessity and possibility and the concept of bilateral implication may be used together.
It resulits in the foliowing joint (generalized) modus ponens and tollens

T(p~q)
T(q-p) (14)
N(p),(p) such that N(p) <T(p) <II(p)

N(q) <T(q) <1K(q)

where, eg., for tukasiewicz’s implication (7) we have

N@) = max(0,N(p)+T(p=q)-1) s N(p) 15)
m(q) = min(1,(p)-T(g-p)+1) = I(p)

}
The process of reasoning can be mapped on the diagram Fig.7, as a sequence of vectors going

upstairs. It is easy to see that the certainty of the conclusion can not be better than the certainty of the
premise. In order to improve this situation, that means to obtain conclusions that are more certain than
the premises, we ought to have some set of independent rules resulting in the same conclusion obtained
as an aggregate of partial conclusions.

3.4. Handling of uncertainty in the frame interpreter of CC_SHELL

The value of each statement in the frame interpreter of CC_SHELL is given by three numbers (n p v),
where n - necessity, p - possibility, v - degree of importance. It has been assumed that:
(np)=(p10
(n) = (n 1.0 1.0)
() = (0.0 1.0 1.0)
and

YES = (1.0 1.0 1.0) and NO = (0.0 0.0 1.0)

The following set of operators is included (for the given statements S4s 32) [4]:
. X_AND
n = min(ny,ny)
p = min(p,,po)
v = max(v, ,v2)

. X_OR
n = max(ny,no)
p = max(p4,po)
v = min(vy,v,)

. X_IMP
n = min(ny,no)
p = max(p,po)
v=vyty,

. X_AGR

n= (n-‘ *V1 + n2*V2) / (V1 + V2)
P =py*vy +pa*vp) [vy + V)
V= V1 + V2

X_NOT

n=1-l71
p=1-py
V=V1

4. Acknowledgment

Both authors want to express their gratitude to the Alexander von Humboldt Foundation for their
constant support. -

5. References

(1]
2]

(3]
[4]
8]
6]

(7]
(8]

[l
o]

BARTLETT F.C.: Remembering. The University Press, Cambridge 1932.

CHOLEWA W.: Aggregation of fuzzy opinions - an axiomatic approach. Fuzzy Sets and Systems,
17, 1985, p.249-258.

CHOLEWA W.: Reciprocal fuzzy implication. First Joint IFSA-EC and EURO-WG Workshop on
Progress in Fuzzy Sets. Abstracts. Warszawa 1986, p.19.

CHOLEWA W. et al: W _SHELL User's Guide and Reference Manual (in Polish). Report G-
547/RMT-4/91, Technical University, Gliwice 1991,

CZOGALA E. et al: Approximate Reasoning in Knowledge-Based Systems (in Polish), Report
RR!.14/T/15/52/90, Technical University, Gliwice 1990.

DUBOIS D., PRADE H.: Possibility theory - An approach to computerized processing of
uncertainty. Plenum Press, New York 1988.

GOFFMAN E.: Frame Analysis. Harper & Row, New York 1974,

MINSKY M.: A Framework for Representing Knowledge. [in:] Computers and Thought. [ed.(]
WINSTON P.H.; McGraw-Hill, New York 1975, p.211-277.

SHORTLIFFE E.H.: Computer-based medical consultation MYCIN. Elsevier, New York 1976.

ZADEH L.A.: The role of fuzzy logic in the management of uncertainty in expert systems. Esevier
Science Publishers 1983.

