REMARK ON NEW OBJECTS RELATED WITH INTUITIONISTIC FUZZY SETS Krassimir T. Atanassov

Inst. for Microsystems, Lenin Boul. 7 km., Sofia-1184, Bulgaria

Let E be a fixed universe. In the frames of the ordinary set theory we can define for every $x,\ y\in E$ the following three sets:

 $\underline{we}(x, y) = \{X / x, y \in X \& X \subset E\},\$

 $you(x, y) = \{X / x \in X \& y \in X \& X \subset E\},\$

they $(x, y) = \{X / x, y \notin X \& X \subset E\}.$

Obviously, if card(E) = n, then:

(a) $card(\underline{we}(x, y)) = card(\underline{you}(x, y))$

= card(
$$\frac{\text{they}}{x}$$
, y)) = 2^{n-2}

(b) $\underline{we}(x, y) \cup \underline{you}(x, y) \cup \underline{you}(y, x) \cup \underline{they}(x, y) = P(E),$ where $P(X) = \{Y / Y \subset X\}.$

In the case of Intuitionistic Fuzzy Sets (IFS) [1] (the set A is an <u>IFS</u> in the universe E, if A has the form:

$$A = \{ \langle x, \mu(x), \gamma(x) \rangle / x \in E \},$$

where μ (x) and γ (x) are degrees of membership and of non-membership of x \in E, respective, and μ (x) + γ (x) \le 1), by analogy with [2], we shall define the following:

the element $x \in E$ is <u>sure</u> in $A \subset E$ <u>iff</u> $\mu_A(x) \ge 1/2$.

Obviously, for this element are valid:

$$\gamma_{A}(x) \le 1/2 \text{ and } \mu_{A}(x) \ge \gamma_{A}(x)$$

(this is an analogous of the concept "intuitionistic fuzzy tautology" from [2]). By analogy with the above definitions, we can introduce the following objects, related to IFSs:

$$\underline{we}(x, y) = \{X / \mu_X(x) \ge 1/2 \& \mu_X(y) \ge 1/2 \& X \subset E\},$$

$$\underline{you}(x, y) = \{X / \gamma(x) > 1/2 \& \mu(y) \ge 1/2 \& X \subset E\},\$$

$$\frac{\text{they}}{X}(X, Y) = \{X / \gamma(X) > 1/2 \& \gamma(Y) > 1/2 \& X \subset E\}.$$

Obviously, $\underline{we}(x, y)$, $\underline{you}(x, y)$ and $\underline{they}(x, y)$ are sets of ordinary (non-IFSs) sets. The above properties (a) and (b) are not valid here.

For example, if E = {x, y, z} and A = {<x, 0.3, 0.3>, <y, 0.3, 0.3>, <z, 0.3>, <z, 0.3>, then A \in P(E x [0, 1]²), but A \notin we(x, y) U you(x, y) U you(y, x) U they(x, y). Therefore there exist x, y \in E for which

 $\underline{we}(x, y) \cup \underline{you}(x, y) \cup \underline{you}(y, x) \cup \underline{they}(x, y) \neq P(E \times [0, 1]^2).$

On the other hand, the above defined sets in the terms of the ordinary fuzzy sets have the forms:

$$\underline{we}(x, y) = \{X / \mu_X(x) \ge 1/2 \& \mu_X(y) \ge 1/2 \& X \subset E\},\$$

$$\underline{you}(x, y) = \{X / \mu(x) < 1/2 \& \mu(y) \ge 1/2 \& X \subset E\},\$$

$$\frac{\text{they}}{X}(X, Y) = \{X / \mu_X(X) < 1/2 \& \mu_X(Y) < 1/2 \& X \subset E\},\$$

and the above property (b) is valid for these sets.

Therefore, there exist ordinary set properties which are not valid for IFSs.

THEOREM 1: For every $x, y \in E$

- (a) $\underline{we}(x, y) = \underline{we}(y, x)$,
- (b) $\underline{you}(x, y) \cap \underline{you}(y, x) = \emptyset$,
- (c) $\underline{\text{they}}(x, y) = \underline{\text{they}}(y, x).$

THEOREM 2: For every $x, y \in E$

- (a) we(x, y) is a filter
- (b) they(x, y) is an ideal

in the sense of [3].

<u>Proof</u>: (a) Let Y, $Z \in \underline{we}(x, y)$. Then

$$\mu_{Y}(x) \ge 1/2 \& \mu_{Y}(y) \ge 1/2 \& Y \subset E$$

$$\mu_{Z}(x) \geq 1/2 \& \mu_{Z}(y) \geq 1/2 \& Z \subset E$$

and therefore for the IFS $X = Y \cap Z$ follows, that

$$y(x) = min(y(x), y(x)) \ge 1/2,$$

$$\mu_{X}(y) = \min(\mu_{X}(y), \mu_{Z}(y)) \ge 1/2.$$

Hence $Y \cap Z \in \underline{we}(x, y)$.

Let $X \in \underline{we}(x, y)$ and $X \subset Y$. Then for every $x, y \in E$:

$$1/2 \le \mu_{X}(x) \le \mu_{Y}(x),$$
 $1/2 \le \mu_{X}(y) \le \mu_{Y}(y),$

and therefore $Y \in \underline{we}(x, y)$.

(b) Let Y, $Z \in \underline{they}(x, y)$. Then

$$\gamma_{Y}(x) > 1/2 & \gamma_{Y}(y) > 1/2 & Y \subset E$$
 $\gamma_{Z}(x) > 1/2 & \gamma_{Z}(y) > 1/2 & Z \subset E$

and therefore for the IFS X = Y U Z follows, that

$$\gamma_{X}(x) = \min(\gamma_{X}(x), \gamma_{Z}(x)) > 1/2,$$

$$\gamma_{X}(y) = \min(\gamma_{X}(y), \gamma_{Z}(y)) > 1/2.$$

Hence Y U Z \in they(x, y).

Let $X \in \underline{\text{they}}(x, y)$ and $Y \subset X$. Then for every $x, y \in E$:

$$1/2 < \gamma_{X}(x) \le \gamma_{Y}(x),$$
 $1/2 < \gamma_{Y}(y) \le \gamma_{Y}(y),$

and therefore $Y \in \underline{\text{they}}(x, y)$. \Diamond

In [4] are defined two operators which are similar to the operators "necessity" and "possibility" defined in some modal logics. They have the forms for every IFS A:

$$\Box A = \{\langle x, \mu(x), 1-\mu(x) \rangle / x \in E\};$$

$$\Diamond A = \{\langle x, 1-\gamma(x), \gamma(x) \rangle / x \in E\}.$$

Let A is the IFS which corresponds to the ordinary set A (see e.g., [5]).

Obviously, it is valid

THEOREM 3: For every x, y ∈ E

- (a) if $X \in we(x, y)$, then $\Diamond X \in we(x, y)$,
- (b) if $X \in \underline{\text{they}}(x, y)$, then $\Box X \in \underline{\text{they}}(x, y)$.

It is valid more general assertion too.

THEOREM 4: For every $x, y \in E$

- (a) if $X \in \underline{we}(x, y)$, then $DX \in \underline{we}(x, y)$,
- (b) if $X \in \underline{\text{they}}(x, y)$, then $\overline{\Diamond X} \in \underline{\text{they}}(x, y)$.

 \underline{Proof} : (a) Let $X \in \underline{we}(x, y)$. Then

$$\mu_{X}(X) \geq 1/2 \& \mu_{X}(Y) \geq 1/2 \& X \subset E.$$

Hence for the IFS DX is valid that

$$\mu (x) \geq 1/2 \& \mu (y) \geq 1/2 \& \square X \subset E$$

and therefore for the IFS $\square X$ follows, that $\square X \in we(x, y)$.

(b) is proved abalogously. ◊

REFERENCES:

- [1] Atanassov K. Intuitionistic fuzzy sets, Fuzzy sets and Systems, Vol. 20 (1986), No. 1, 87-96.
- [2] Atanassov K. On intuitionistic fuzzy sets and their applications in: "Actual Problems of Sciences", Sofia, Bulg. Acad. of Sci., 1989, Vol. i, pp. 53 (in Bulg.).
- [3] Rasiova H., Sikorski R. The mathematics of metamathematics, Warszawa, Pol. Acad. of Sci., 1963.
- [4] Kaufmann A. Introduction a la theorie des sour-ensembles flous, Paris, Masson, 1977.