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Let E Dbe a fixed universe. In the frames of the ordinary set
theory we can define for every x, y € E the following three sets:
we(x, v) = (X / x, vy € X & X c E},

you(x, y) = (X / x ¢ X &y € X & X ¢ E},

they(x, ¥y) = (X / x, vy ¢ X & X c E}.
Obviously, if card(E) - n, then:

(a) card(we(x, y)) = card(you(x, y))

n-2
card(they{x, y)) = 2

{(b) we{x, Y) U you(x, Yy) U XQ_P_(YI x}) U th_QX(xl Y} = P{(E),
where P(X) = {Y / Y C Xi.

In the case of Intuitionistic Fuzzy Sets (IFS) [1] (the set A

is an IFS in the universe E, if A has the form:

A = f<x, p (x), v (x)> / x € EI,
- A A
where P (X) and v (x) are degrees of membership and of non-mem-
A A
bership of x € E, respective, and p (X) + v (X) < 1)}, by analogy
A A

with (2], we shall define the following:

the element X € E is sure in Ac E iff p (x) 2 1/2.
A

Obviously, for this element are valid:

v {X) € 1/2 and p (X} 2 v (xX)
A A A

{this is an analogous of the: concept "intuitionistic fuzzy tauto-
logy™" from [2]). By analogy>with the above definitions, we can

introduce the following objects, related to IFSs:

we(x, y) = (X / b (x) 2 1/2 & b (¥) 2 1/2 & X c EJ,
you{x, v) = {X / v (x) > 1/2 & px(y) 2 1/2 & X c E},
X
the!(xi Y) =

{X / 7x(x) > 1/2 & vx(y) > 1/2 & X c E}.



Obviously, we(x, Y)

dinary (non-IFSs) sets,

valid here.

For example, if E = {x, y, 2} and A = {<x, 0.3,- 0. 3>, <y, 0.3,
0.3>, <z, 0.3, 0.3>, then A ¢ P(E x [0, 1)), but A ¢ we(x, y) U
You(x, v) U you(y, x) U they(x, y). Therefore there exist Xx, y ¢
E for which

we(x, y) U you(x, y) U you(y, x) U they(x, y) # P(E x [0, {1]2).

On the other hand, the above defined sets in the terms of the

, You(x, y) and they(x,

The above properties

ordinary fuzzy sets have the forms:

we({x, Y) =
you(x, y} =
they(x, y) =

and the above property (b) is valid for these sets,

Therefore,

valid for IFSs,

THEOREM {: For every X, Y € E
(a) we(x, y) = we(y, Xx),
{(b) you(x, y) N you(y, Xx) = g,
(c) they(x, y) = they(y, x).
THEOREM 2: For every X, ¥ € E
{a) we(x, y) is a filter
{b) ngx(x, Y) i3 an ideal
in the sense of [3].
Proof: (a) Let Y, Z € we(X, y). Then
“y(x) 2 1/2 & uY(Y) 2 1/2 & Y CE
uz(x) 2 1/2 & NZ(Y) 2 1/2 & Z Cc B
and therefore for the IFS X = Y N Z follows, that
HX(X) z min(py(x). Pz(x)) 2 1/2,
UX(Y) = min(Uy(Y). UZ(Y)) : /2.

tX / p (x)
X

< 1/2 & p (y)
X

there exist ordinary set properties

Yy) are sets

of or-

{(a) and (b) are not

tX / UX(X) 2 1/2 & UX(Y) > 1/2 & X c E},
£xX / UX(X) < 1/2 & ux(y) > 1/2 & X C E},

< 1/2 & X Cc E},

which are not



Hence Y N Z € wetx, Y).
Let X € we(x, y) and X c Y. Then for every X, Y € E:
1/2 < p (x) < p (X},
X Y

172 < p (YY) < p (Y),
X Y

and therefore Y € we(x, Y).

{b) Let Y, Z ¢ they(x, Y). Then
vy (X) > 1/2 & v (y) > t/2 &Y C E
Y Y

vy (x) > 1/2 & v (y) > 1/2 & Z Cc E
Z Z
and therefore for the IFS X = Y U Z follows, that

Yy (X)
X

"

min{r (x), v (x)) > 1/2,
Y Zz

T (Y) min(r (y), v (y)) > 1/2.
X Y z

Hence Y U Z € they(x, Y).
Let X € they(x, y) and Y c X. Then for every X, Y € E:
1/2 < v (x) ¢ v (X),
X Y

1/72 < v (y) £ v (Y},
X Y

and therefore Y ¢ they(x, Y). ¢

In [4] are defined two operators which are similar to the ope-
rators "necessity" and "possibility"” defined in some modal lo-
gics. They have the forms for every IFS A:

0A

1

f<x, p (x), 1-p (X)>/X€E};
A A

OA

f¢<x, 1-v (xX), T (xX)>/X€E},
A A

Let A is the IFS which corresponds to the ordinary set A (see
e. 9., [5]1).
Obviously, it is valid

THEOREM 3: For every X, Y € E

(a) if X € we(x, Y), then ¢X € we(x, Y),

(b) if X ¢ they(x, y), then 6; € they(x, v).




It is valid more general assertion too.

THEOREM 4: For every X, Y € E

(a) if X € we(x, y), then OX € we(x, Y),

{b) if X € they(x, y), then ¢X € they(x, Y).

Proof: (a) Let X ¢ we(x, y). Then

Ux(x) 2 1/2 & DX(Y) 2 1/2 & X C E.

Hence for the IFS pX is valid that

boo(x) 2 4/2 & p (y) 21/2 & DX C E
ox O

and therefore for the IFS pX follows, that pX € we(x, y).

{(b) is proved abalogously. ¢
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