Fuzzy Ideals Generated by Fuzzy Sets in Semigroups

Mo Zhi-wen and Wang Xue-ping
Department of Mathematics
Sichuan Normal University
Chengdu, 610066
P. R. China

Abstract

In this paper, the definition of a fuzzy left (right) ideal (a fuzzy ideal, a fuzzy bi-ideal, a fuzzy interior ideal) generated by a fuzzy set in semigroups is given. And the depiction of them are researched.

Keywords: Fuzzy left (right) ideal (Fuzzy ideal, Fuzzy bi-ideal, Fuzzy interior ideal) generated by a fuzzy set.

1. Introduction

The concept of fuzzy set, introduced in L. A. Zadeh [8], was applied to the elementary theory of groupoids and groups in A. Rosenfeld [7], semigroups in N. Kuroki [2 — 5] and in authors' paper [6]. In the present paper we shall give the definition of a fuzzy left (right) ideal (a fuzzy ideal, a fuzzy bi-ideal, a fuzzy interior ideal) generated by a fuzzy set in semigroups. And some characterisations of them are showed.

2. Preliminaries

In this paper, we always suppose that S is a semigroup, S¹ a semigroup with unity element 1 (see [1]) and "F-" stands for "fuzzy".

A map f from S^1 to the closed interval [0, 1] is called a fuzzy set in S^1 . Let $F(S^1)$ denote the set of all fuzzy sets in S^1 . For any A, $B \in F(S^1)$, $A \subseteq B$ if and only if $A(x) \leq B(x)$, in the ordering of [0, 1], for all $x \in S^1$. Remark. For all $x \in S^1$, $A_i \in F(S^1)$, $i \in I$ (indexing set),

$$(\bigcup_{i} A_{i})(x) = \bigvee_{i} A_{i}(x) = \sup_{i} A_{i}(x), (\bigcap_{i} A_{i})(x) = \bigwedge_{i} A_{i}(x) = \inf_{i} A_{i}(x).$$

Pu and Liu gave the definition of a fuzzy point (cf. [9], Definition 2.1 and Definition 2.2). Clearly that every $A \in F(S^1)$,

$$A = \bigcup_{x_{\lambda} \in A} x_{\lambda}$$

where $0 < \lambda \le 1$, $x_{\lambda} \in A$ if and only if $x_{\lambda} \subseteq A$,

$$x_{\lambda}(y) = \begin{cases} \lambda & \text{if } y = x, \\ \\ 0 & \text{if } y \neq x; \end{cases}$$

for all $y \in S^1$. For x_{λ} , $y_{\mu} \in F(S^1)$, $x_{\lambda} \subseteq y_{\mu}$ if and only if x = y and $\lambda \leq \mu$. Definition 2.1. $f \in F(S^1)$ is called a fuzzy subsemigroup of S^1 if

$$f(xy) \ge \min \{ f(x), f(y) \}$$

for all x, $y \in S^1$.

The definition of a fuzzy left (right) ideal (a fuzzy ideal, a fuzzy bi-ideal, a fuzzy interior ideal) of S^1 can be seen in [2-5].

Definition 2.2.[6]. Let $f \in F(S^1)$, the smallest fuzzy left (right, two-sided) ideal of S^1 containing f is called a fuzzy left (right, two-sided) ideal of S^1 generated by f, denoted by $\langle f \rangle$ ([f], (f)) (where a fuzzy two-sided ideal means a fuzzy ideal).

Proposition 2.3. A fuzzy ideal of S^1 is a fuzzy bi-ideal of S^1 , and also a fuzzy interior ideal of S^1 .

Proof. Let $f \in F(S^1)$ be a fuzzy ideal of S^1 . Then by definition of a fuzzy ideal, for all $x, y \in S^1$, $f(xy) \ge f(x)$, $f(xy) \ge f(y)$. This follows that

$$f(xy) \ge \min \{f(x), f(y)\}.$$

So f is a fuzzy subsemigroup of S¹. For x, y, z \in S¹, f(xyz) = f((xy)z) \geq f(z)

and $f(xyz) = f(x(yz)) \ge f(x)$. Thus

$$f(xyz) \ge \min \{f(x), f(z)\}.$$

This means f is a fuzzy bi-ideal of S^1 . Now we further prove f is also a fuzzy interior ideal of S^1 . For x, a, $y \in S^1$,

$$f(xay) \ge f(ay) \ge f(a)$$
.

This completes the proof.

Proposition 2.4. Let $f \in F(S^1)$, then f is a fuzzy ideal of S^1 if and only if f is a fuzzy interior ideal of S^1 .

Proof. By Proposition 2.3, the necessity is obviously. Sufficiency. For x, $y \in S^1$, $f(xy) = f(xy1) \ge f(y)$, $f(xy) = f(1xy) \ge f(x)$, this means f is also a fuzzy ideal of S^1 .

3. Fuzzy ideals generated by fuzzy sets

Theorem 3.1. Let $f \in F(S^1)$, then $\langle f \rangle = J$, where

$$J(a) = \sup_{a = x_1 x_2} f(x_2)$$

 $x_1, x_2 \in S^1$

for all $a \in S^1$.

Proof. For $a \in s^1$,

$$J(a) = \sup_{a = x_1 x_2} f(x_2) \ge \sup_{a = 1a} f(a) = f(a),$$

that is $J \supseteq f$. For x, $y \in S^1$, by the defining way of J we have

$$J(xy) = \sup_{xy = x_1^{x_2}} f(x_2) \ge \sup_{xy = (xz_1)z_2} f(z_2) = J(y).$$

$$y = z_1^{z_2}$$

$$y = z_1^{z_2}$$

This means J is a fuzzy left ideal of S¹. If I is a fuzzy left ideal of S¹ and $f \subseteq I$, then for $a \in S^1$, $f(a) \le I(a)$, and

$$J(a) = \sup_{a = x_1 x_2} f(x_2) \le \sup_{a = x_1 x_2} I(x_2) \le \sup_{a = x_1 x_2} I(x_1 x_2) = I(a).$$

This follows that $J \subseteq I$. By Definition 2.2 we have that $\langle f \rangle = J$.

Theorem 3.2. Let $f \in F(S^1)$, then (f) = J, where

$$J(a) = \sup_{a = x_1 x_2} f(x_1)$$

 $x_1, x_2 \in S^1$

for all $a \in S^1$.

Proof. For a \in S¹,

$$J(a) = \sup_{a = x_1 x_2} f(x_1) \ge \sup_{a = a_1} f(a) = f(a),$$

that is $J \ge f$. For x, $y \in S^1$,

$$J(xy) = \sup_{xy = x_1 x_2} f(x_1 x_2) \ge \sup_{xy = z_1 (z_2 y)} f(z_1) = J(x).$$

$$xy = x_1 x_2 \qquad xy = z_1 (z_2 y) \quad x = z_1 z_2$$

$$x = z_1 z_2$$

This reaches J is a fuzzy right ideal of S1. If I is a fuzzy right ideal of S1

and $f \subseteq I$, then for $a \in S^1$, $f(a) \leqslant I(a)$, further more

$$J(a) = \sup_{a = x_1 x_2} f(x_1) \le \sup_{a = x_1 x_2} I(x_1) \le \sup_{a = x_1 x_2} I(x_1) = I(a),$$

thus $J \subseteq I$. By Definition 2.2 we have [f] = J.

Theorem 3.3. Let $f \in F(S^1)$, then

- (i) $[\langle f \rangle] = (f);$
- (ii) $\langle [f] \rangle = (f);$
- (iii) [<f>] = <[f]>.

Proof. Firstly. By Theorem 3.2 we have $\{\langle f \rangle\}$ is a fuzzy right ideal of S^1 . Secondly. For x, $y \in S^1$,

$$() (xy) = \sup (x_1) = \sup \sup \sup f(z_2)$$

 $xy = x_1x_2$ $xy = x_1x_2$ $x_1 = z_1z_2$

and

$$[\langle f \rangle](y) = \sup_{y = y_1 y_2} \langle f \rangle (y_1) = \sup_{y = y_1 y_2} \sup_{y = y_1 y_2} f(w_2).$$

Obviously $\{\langle f \rangle\}(xy) \geqslant [\langle f \rangle](y)$, that is $[\langle f \rangle]$ is also a fuzzy left ideal of S¹. So $[\langle f \rangle]$ is a fuzzy ideal of S¹. Since $f \subseteq \langle f \rangle \subseteq [\langle f \rangle]$, we have $[\langle f \rangle] \geqslant f$. If I is a fuzzy ideal of S¹ and I $\geqslant f$, then by I is a fuzzy

left ideal of S^1 , we have $I \ge \langle f \rangle$, further more by I is a fuzzy right ideal of S^1 , $I \ge [\langle f \rangle]$. Then by Definition 2.2, $[\langle f \rangle]$ is a fuzzy ideal of S^1 generated by f, that is $[\langle f \rangle] = (f)$. Similarly we can prove $\langle \{f\} \rangle = (f)$. So $[\langle f \rangle] = (f) = \langle \{f\} \rangle$.

By Theorem 3.1, 3.2 and 3.3 respectively, we can examine the following two propositions.

Proposition 3.4 [6]. Let
$$x_{\lambda} \in F(S^{1})$$
, then $\langle x_{\lambda} \rangle = J ([x_{\lambda}] = J)$, where $J(a) = \begin{cases} \lambda & \text{if there exists b } \in S^{1} \text{ such that } a = bx \ (a = xb), \\ 0 & \text{otherwise;} \end{cases}$

for all $a \in S^1$.

for all $a \in S^1$.

4. Fuzzy interior ideals generated by fuzzy sets

Definition 4.1. Let $f \in F(S^1)$, the smallest fuzzy interior ideal of S^1 containing f is called a fuzzy interior ideal of S^1 generated by f, denoted by $\langle f \rangle_{\tilde{I}}$.

Theorem 4.2. Let $f \in F(S^1)$, then $\langle f \rangle_I = J$, where

$$J(a) = \sup_{a = x_1 x_2 x_3} x_1, x_2, x_3 \in s^1$$

for all $a \in S^1$.

Proof. For x, $y \in S^1$,

$$J(xy) = \sup f(x_2) \geqslant \sup f(z_2) = J(x)$$

 $xy = x_1x_2x_3$ $xy = z_1z_2(z_3y)$
 $x = z_1z_2z_3$

and

$$J(xy) = \sup_{x_1 x_2 x_3} f(x_2) \geqslant \sup_{x_2 = (xw_1)w_2w_3} f(y),$$

 $y = w_1 w_2 w_3$

thus $J(xy) \ge \min \{J(x), J(y)\}$, that is J is a fuzzy subsemigroup of S¹. For . a E s¹.

$$J(a) = \sup f(x_2) \ge \sup f(a) = f(a),$$

 $a = x_1x_2x_3$ $a = 1a1$

hence $J \ge f$. For x, a, $y \in S^1$,

$$J(xay) = \sup_{x_1 x_2 x_3} f(x_2) \ge \sup_{x_2 x_3} f(x_2) = J(a).$$

$$xay = x_1 x_2 x_3 \qquad xay = (x_2 x_1) x_2 (x_3 y)$$

$$a = x_1 x_2 x_3$$

This follows that J is a fuzzy interior ideal of S¹. Let I be any fuzzy interior ideal of S^1 and $I \supseteq f$, then for all $a \in S^1$,

$$J(a) = \sup f(x_2) \le \sup I(x_2) \le \sup I(x_1x_2x_3) = I(a)$$

 $a = x_1x_2x_3$ $a = x_1x_2x_3$ $a = x_1x_2x_3$

By Definition 4.1, we get $\langle f \rangle_T = J_{\bullet}$

From Proposition 2.4, we have:

Proposition 4.3. Let $x_n \in F(S^1)$, then $\langle x_n \rangle_T = J$, where for all $a \in S^1$

Let
$$x_1 \in F(S')$$
, then $\langle x_1 \rangle_I = J$, where for all $a \in S'$

$$J(a) = \begin{cases} \lambda & \text{if there exist } x_1, x_2 \in S^1 \text{ such that } a = x_1 x x_2, \\ 0 & \text{otherwise;} \end{cases}$$

Set $f = x_{\lambda}$, then from Theorem 4.2 we also can prove Proposition 4.3.

5. Fuzzy bi-ideals generated by fuzzy sets

Definition 5.1. Let $f \in F(S^1)$, the smallest fuzzy bi-ideal of S^1 containing f is called a fuzzy bi-ideal of S^1 generated by f, denoted by $\langle f \rangle_n$.

Definition 5.2. Let $f \in F(S^1)$ be a fuzzy subsemigroup of S^1 . f is called a fuzzy submonoid of S^1 if $f(1) \ge f(x)$ for all $x \in S^1$.

Theorem 5.3. Let $f \in F(S^1)$ be a fuzzy submonoid of S^1 , then $\langle f \rangle_B = J$, where

$$J(a) = \sup_{a = x_1 x_2 x_3} \min \{f(x_1), f(x_3)\}$$

for all $a \in S^1$.

Proof. For a Es1.

$$J(a) = \sup \min \{f(x_1), f(x_3)\} \ge \sup \min \{f(1), f(a)\} = \sup f(a) = f(a),$$

 $a = x_1x_2x_3$ $a = 1 1 a$ $a = 1 1 a$

that is $J \ge f$. For x, y, $z \in S^1$,

$$J(x) = \sup \min \{f(x_1), f(x_3)\}, J(z) = \sup \min \{f(z_1), f(z_3)\}$$

 $x = x_1 x_2 x_3$
 $z = z_1 z_2 z_3$

and

$$J(xyz) = \sup \min \{f(w_1), f(w_3)\} \geqslant \sup \min \{f(x_1), f(z_3)\}.$$

$$xyz = w_1w_2w_3 \qquad xyz = x_1(x_2x_3yz_1z_2)z_3$$

$$x = x_1x_2x_3$$

$$z = z_1z_2z_3$$

But

$$\min \{J(x), J(z)\} = \sup \min \{\min \{f(x_1), f(x_3)\}, \min \{f(z_1), f(z_3)\}\},\ x = x_1 x_2 x_3 \ z = z_1 z_2 z_3$$

so $J(xyz) \ge \min \{J(x), J(z)\}$. Meanwhile if let y = 1, then we have $J(xz) \ge \min \{J(x), J(z)\}$

for all x, $z \in S^1$, that is J is a fuzzy subsemigroup of S^1 . Then J is a fuzzy bi-ideal of S^1 . Let I be a fuzzy bi-ideal of S^1 and $I \ge f$, then for all $a \in S^1$,

$$J(a) = \sup \min \{f(x_1), f(x_2)\} \leq \sup \min \{I(x_1), I(x_2)\}$$

$$a = x_1 x_2 x_3$$

$$\leq \sup \min I(x_1 x_2 x_3) = I(a),$$

$$a = x_1 x_2 x_3$$

thus $J \subseteq I$. Hence $\langle f \rangle_B = J$.

Theorem 5.4. Let $f \in F(S^1)$. If S^1 is a regular semigroup, then $\langle f \rangle_{R} = J$, where

$$J(a) = \sup_{a = x_1 x_2 x_3} \inf \{f(x_1), f(x_3)\}$$

$$x_1, x_2, x_3 \in S^1$$

for all $a \in S^1$.

Proof. From the proof of Theorem 5.3, we only need to prove $J(a) \ge f(a)$ for all $a \in S^1$. Indeed,

$$J(a) = \sup \min \{f(x_1), f(x_3)\} \ge \sup \min \{f(a), f(a)\} = f(a)$$

 $a = x_1 x_2 x_3$ $a = axa$

for all a \in s¹.

Let $f = x_{\lambda}$ and by Theorem 5.4, we can obtain:

Theorem 5.5. Let $x_{\lambda} \in F(S^1)$. If S^1 is a regular semigroup, then $\langle x_{\lambda} \rangle_{H^2} J$, where

$$J(a) = \begin{cases} \lambda & \text{if there exists } y \in S^1 \text{ such that } a = yxy, \\ 0 & \text{otherwise;} \end{cases}$$

for all $a \in S^1$.

Conversely, let B be a fuzzy regular open set in X_2 and p be a fuzzy point in $f^{-1}(B)$. Then $p \leqslant f^{-1}(B)$, i.e., $f(p) \leqslant B$. From hypothesis there exists a fuzzy semiopen set A in X_1 such that $p \leqslant A$ and $f(A) \leqslant B$, hence

$$P \leq A \leq f^{-1} f(A) \leq f^{-1} (B)$$

and

$$P \leq A = A_0 \leq (f^{-1}(B))_0$$
.

Since p is arbitrary and $f^{-1}(B)$ is the union of all fuzzy points in $f^{-1}(B)$, $f^{-1}(B) \leqslant (f^{-1}(B))_0$, i.e., $f^{-1}(B) = (f^{-1}(B))_0$. Thus f is fuzzy almost semicontinuous.

Theorem 3. Let $f: (X_1, \delta_1) \rightarrow (X_2, \delta_2)$ be a mapping from a fuzzy space X_1 to a fuzzy regular space [2] X_2 . Then f is fuzzy almost semicontinuous iff f is fuzzy semicontinuous.

Theorem 4. Let $f: (X_1, \delta_1) \rightarrow (X_2, \delta_2)$ be a mapping. Then the following are equivalent:

- (1) f is fuzzy almost semiopen.
- (2) $f(A) \leq (f(A^{-0}))_0$, for each $A \in S_1$.
- (3) For each fuzzy set B of X_2 and each fuzzy regular closed set A of X_1 , when $f^{-1}(B) \leq A$, there exists a fuzzy semiclosed set C of X_2 , such that $B \leq C$ and $f^{-1}(C) \leq A$.

References

- [1] C.L.Chang, J. Math. Anal. Appl. 24(1968), 182-190.
- [2] K.K.Azad, J. Math. Anal. Appl. 82(1981), 14-32.
- [3] T.H. Yalvac, J. Math. Anal. Appl. 132(1988), 356-364.
- [4] Pu Pao Ming and Liu Ying Ming, J. Math. Anal. Appl. 76(1980), 571-599.
- [5] Bai Shi Zhong, Fuzzy weakly semicontinuity, Fuzzy Sets and Systems, in press.

Reference

- 1. A. H. Clifford and G. B. Preston, The Algebraic Theory of Semigroups, Vol. I. Math. Surveys No. 7 (Am. Math. Soc., Providence, RI, 1961).
- 2. N. Kuroki, Fuzzy bi-ideals in semigroups, Comment. Math. Univ. St. Paul. 28: 17 -- 21 (1979).
- 3. N. Kuroki, On fuzzy ideals and fuzzy bi-ideals in semigroups, Fuzzy Sets and Systems 5: 203 -- 215 (1981).
- 4. N. Kuroki, Fuzzy semiprime ideals in semigroups, Fuzzy Sets and Systems 8: 71 79 (1982).
- 5. N. Kuroki, On fuzzy semigroups, Inform. Sci. 53: 203 236 (1991).
- 6. Wang Xue-ping, Mo Zhi-wen and Liu Wang-jin, Fuzzy ideals generated by fuzzy point in semigroups, to appear.
- 7. A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl. 35: 512 -- 517 (1971).
- 8. L. A. Zadeh, Fuzzy sets, Inform. and Control 8: 338 353 (1965).
- 9. P. M. Pu and Y. M. Liu, Fuzzy topology I, J. Math. Anal. Appl. 76: 571 -- 599 (1980).