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ABSTRACT. In this preliminary study the fuzzy set theory is used
as a framework for representation and manipulation of uncertain
information in regression analysis. An approach for obtaining a

nonlinear interval a-model which fits to given fuzzy output data

is proposed.

1. INTRODUCTION

Regression analysis has been widely recognized in the last
years as one of the most relevant area in system identification
and its applications. Techniques for identification of linear
and nonlinear models in the presence of noise are well
established. The conventional approach (3] has some
disadvantages despite its popularity. Statistical properties of
the noise are commonly assumed to be known in advance or
determinable from observations. A classical technique is
maximum-likelihood estimation, where the parameter estimates are
computed by maximizing a criterion deduced from the probability
density function of the noise corrupting the data, assumed to be
known or parametrized. Such statistical assumptions are
questionable when information is limited or model structure and

hence the modelling error are in doubt.



This paper addresses such a situation, where the data y are
supposed to be described by a deterministic parametric model F

corrupted by an additive noise e, so that the measured vector y

= (Yyr oo yn)T satisfies

y = F(6) + e (1)
where © ==(el, ooy em)T is the true value of the parameter
vector to be estimated and e = (e, ..., en)T represents the

unknown n-dimensional observation error. To perform the
parameter estimation it is necessary that the structure (1) is
identifiable and that an error model is available.

In recent years different error models have been proposed
[11, [31, (51, [11], referring to stochastic, interval and fuzzy
models. Tanaka, Uejima and Asai [6] have developed fuzzy
regression analysis based on fuzzy set theory. Regarding the
deviation between the data as a reflection of fuzziness on
system parameters, the fuzzy structure is presented as a linear
function with fuzzy parameters. In [7] a possibilistic
interpretation of a fuzzy regression model is given and
discussed in detail in references [8], [9]. The possibilistic
linear regression analysis is formulated by fuzzy 1linear
function as a model of possibility structure of the system we
wish to model. The fuzzy 1linear function is defined from
possibility distributions of the parameters based on extension
principle [1] which can also be explained in terms of
possibility measure.

In this contribution we assume that deviations between the

actual values and the computed values of the dependent variable



in nonlinear fuzzy regression (NLFR) are related to the fuzzy
observation errors as opposed to being related to the soft
structure of the system under consideration. Different
algorithms for obtaining an interval a-model wich fits to given

fuzzy output data are developed.

2. PROBLEM STATEMENT

The basic model considered here is the general multiple
nonlinear regression model (1). Our basic assumption is that
the residual or deviation of the estimated from (1) value
ii and observed value y;, i.e. e = §i - Yi i=1, ..., n,
where n is the number of samples, is related to observation
error which is fuzzy variable. Therefore, the problem is to
estimate the parameter vector 6 given the input-output data
(x3,Y1) disturbed by fuzzy errors e;, where X; is nonfuzzy input
vector and Yy; is a fuzzy output. A fuzzy number e; is
represented by a fuzzy set defined on real field R = [~w0, +w]
with membership function pug;(x) as the degree of belongingness
of the element x to this set. At each sample the observation
error is considered to be a fuzzy number having concave
membership function with compact support. Given a particular a-
level of all pgji(x), 0 < a < 1, all the deviations e; become

closed and bounded intervals

ej(a) = [e;(a), eI(a)] for each a-level. Thus, we suggest to

discretize their membership values by different a€[0,1] values,
ij.e. we use a-cut to get a nonfuzzy and nonstatistical
description of the deviation in the form of bounds on its

instantaneous values.



The generic NLFR model used herein consists of following
bounded-error model, one for each a-level of corresponding

membership function pug:

For notational simplisity y,(i) is assumed to be a scalar, but
the results to be presented can be extended without eny
difficulty to the multivariable case. Our study of NLFR is based
on the following hypotheses:
1. The system is of the form (1).
2. The empirical input data are error free and that of
the output are bounded at a-level by intervals, i.e.

the set of observations

-, +,. .
X3 = (X957 ooy xpi)Tl [ya(l)l ya(l)] i1=1, «.., N

on the input and output variables are available. Note

-, R + - R -
that y (i) = y,(i) - ej(a) and y, (i) = ya(i) - ej(a).
3. A model y = F(©) is acceptable at a-level if and only
if the noise free output is consistent with the

measurement y(i) and bound over the observation error

- +
[ej(a), ej(a)].
Estimating © with hypotheses 1-3 then consists of the

determination of a feasible parameter set at a-level.

3. PARAMETER ESTIMATION
The approach proposed here considers that the parameter
vector belongs to a set DaeRm (where m is the number of

parameters) which has to be characterized from the available



information on the data and noise. Such estimators thus do not
yield directly a single estimate in terms of a priori specified
membership function of the parameter vector. We are looking for
the set D, of all admissible values of © that are consistent
with (1) and assumptions on the fuzzy error. D, is therefore the

set of solutions for © of the 2n inequalities

ya(i) < F(x;,8) < yg(i), i =1, ..., n (3)

and also can be defined as the intersection of n hypersurfaces.
Note that in general D, is not necessarily convex and may not
even be connected. This may result from the fact that the model

is not uniquely identifiable. D, may be empty (if the model

a
and/or hypotheses on the error bounds are erroneous), but is
usually not a singleton.

Obviously, D, may assume a very complicated shape. For this
reason here we will consider only a simplified approximation for

D, in form of a minimal outer box T, bounding the set (3). To

this extent the parameter uncertainty interval Iaj is determined

as.:
Ioj = [8gj: €jls 3 =1, +-oy m (4)
where
5 T b, % T o, )
3Pa 3¢Pa

Finally, the det I, is defined as the cartesian product of

uncertainty intervals for each component of parameter vector:

I, = Ig1 X Igp %X o0 X Iom (6)



Some basic properties of D, Iaj and I, can be summarized

as follows:

1. D, is a set that in general may be non-convex and
non-connected. It can also consist of infinite non-
connected subsets.

2. Iaj are intervals that can be bounded or unbounded,
not all the values within the interval can always be
taken by the parameter. If so, sub-interval can be

defined, any value of wich can be taken by the

parameter.

- +
3. eaj and eaj

min values in the parameter space are possible.

may not be unique, moreover local max and

4. Outer box I, may not exist when the set D, is

unbounded.

It should be noted that Iaj , jJj =1, ..., m may be con-
sidered as an a-cut of the fuzzy parameter ej for different a €
[0, 1]. Therefore, some available methods can be used to
identify the membership functions He3 from such data.

In the following section we consider briefly some
algorithms for the computation of parameter uncertainty

intervals for certain classes of nonlinear problems.

4. ALGORITHMS

Four different classes of algorithms will be considered to
perform the computation of parameter uncertainty intervals.

The first one mainly refer to linearization procedures that
can be applied whenever relation (1) is continuous and
differentiable in the parameters 6. One may thing of linearizing

the model around some value of the parameters estimated



beforehand and then using any method for linear models [4].
Unfortunately, it seems impossible to evaluate the degree of
approximation incurred and to know whether the bounds obtained
contain D, or not.

A second classe of algorithms consists in searching the
boundary points of D, in randomly selected directions, starting
from a point within D, [10]. In such a way it is possible to
obtain a cloud of points belonging to the boundary of D,. One
may, however, argue that these boundary points are not easy to
use for further investigations.

The third classe includes techniques for scanning the
parametric space. The easiest one congists in seting the minimum
amd maximum values of each parameter ej over D, (resp. ejmin'
ejmax)' Note, that ©°= [8;] X ... X [6p] inclu-des D,. N points
are picked at random within 6° according to a uniform
distribution. Then from Np points belonging to D, parameter
uncertainty intervals can easily be computed.

Finally the problem can be tackled using constrained
nonlinear programming algorithms. Obviously these algorithms
cannot quarantee in general the convergence to the global
minimum (maximum).

Thus, a general solution to identification of nonlinear
fuzzy regression model using a-cuts is probably not possible
since nonlinear problems can present so many different and not
homogenous characteristic. It should be noted, that for some
restricted but important classes of nonlinear systems some
stronger results and algorithms can be obtained. For instance,
if F(®8) is polinomial function in e, optimization problems (5)

are signomial ones. Though signomial problem is in general not



convex, an iterative algorithm can be designed, which is able to
evaluate at FNach iteration lower and upper bounds of the global
extremum. Moreover, the sequences of lower and upper bounds are
guaranteed to converge monotonically to the global solution [2].
Note, that the polynomial hypothesis covers large class of
problems of practical interest such as, for example, the

identification of fuzzy multiexponential, ARMA and state spase

discrete time models.

5. CONCLUSIONS

In this study attention has been paid to the problem of
estimating the parameters of nonlinear regression model together
with their uncertainties in the presence of fuzzy error. A
nonfuzzy description of the error in the form of bounds on its
instantaneous values for each a-level has been used in order to
characterize the feasible parameter set. Several classes of
algorithms for the computation of parameter uncertainty

intervals have been discussed.
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