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Abstract. Let F be a soft fuzzy algebra (an s. . algebra) and let S(F) be the
set of all states on F. In this paper we discuss properties of S(F) which seem of
importance in potential applications of s. f. algebras in quantum theories or “soft”
sciences (see e.g. [2], {3], 7], {8], [9], [10], [11], [12] and [13]). The general line of our
investigation is the analysis of the behaviour of the state space in the situation when
we pass from an s. f. algebra to its enlargement. In the first paragraph we prove a
representation theorem for the state space of an s. {. algebra. Then, in the second
part, we describe states on the product of s. f. algebras. In the third part we take
up, and then clarify, the question of how to enlarge s. {. algebras to s. f. algebras with
given state spaces. Finally, we prove an extension theorem for states on s. f. algebras.

0 Preliminaries (basics on soft fuzzy algebras
and states)

Let us first state the definition of the basic notion we shall deal with in this
paper (see e.g. [11]).

Definition 0.1 : Let X be a non-empty set. A soft fuzzy algebra on X is a
set F C [0,1]* satisfying the following conditions:

1. the constant :ero function belongs to F,
2. ifa€F, then at =1—a€ F,

3. ifa,b € F, then aVb € F (the symbol V means here the pointwise
supremum of functions),

4. the constant function 1/2 does not belong to F.

It can be seen easily that an s. f. algebra is a distributive de Morgan lattice
with a least element, 0, and a greatest element, 1. The mapping *, an ortho-
complementation, is an order antiisomorphism. The function a A a*, for any
a € F, does not exceed 1/2 (obviously, it does not have to be 0 in general).

In what follows, we shall be frequently interested in questions concerning
“enlargements” of s. f. algebras. The notion of an enlargement of an s. . algebra
— intuitively plausible — brings the following definition.

Definition 0.2 : Let F, G be s. f. algebras. Then G is said to be an enlargement
of F if there exists @« mapping e : F — G such that the following conditions are
salisfied:



1. the mapping e is injective and e(0) = 0,
2. for each a € F, e(at) = e(a)*,
3. for each a,b€ F, e(aVb)=e(a)Ve(b).

Observe that if G is an enlargement of F and if e is the enlargement mapping
then e(F) is an s. f. algebra in its own right, as needed. Thus, the s. f. algebra
F may be viewed as a subset of §. In the dual expression of this, we call F a
soft fuzzy subalgebra (abbr. an s. f. subalgebra) of G.

Another important notion of this investigation will be the notion of a state.

Definition 0.3 : A state on F is a mapping s : F — [0,1] such that
1 ifa€F, then s(avat) =1,

2. if a,b € F are orthogonal elements (i.c., if a < b*), then s(aV b) =
s(a) + s(b). :

Thus, a state on F is an alternative expression for a finitely additive proba-
bility measure on F (this language is standardly used in quantum theories and
elsewhere - see e.g. [12]). Let us denote by S(F) the set of all states on F. The
following two propositions bring some elementary properties of s. f. algebras.
(In the following propositions and in all what follows, let us use the following
notation: Wo(F) = {aAat :a€ F}, Wy(F)={aVat:aecF}) o

Proposition 0.4 : Suppose that a,b € F. Then each s € S(F) satisfies the
Jollowing properties:

1. if b€ Wo(F), then s(a V b) = s(a),
2. if b€ Wi(F), then s(a Ab) = s(a).
The proof is elementary.

Proposition 0.5 : Let us view S(F) as a subset of the topological preduct
[0, 1]}.. Then S(F) forms there a compact convez subset.

Proof. The state space is obviously closed under the formation of convex
combinations. To show that it is compact, one only has to take into account that
the considered topology of S(F) is the pointwise one. The proof of compactness
then reduces to verifying that S(F) is closed under the formation of pointwise
limits, which is straightforward.

a
Let us observe in the conclusion of preliminaries that if F C {0,1}*, then F

is a Boolean algebra and a state on F is an ordinary finitely additive probability
measure. :



1 A representation theorem for the state space
of a soft fuzzy algebra

In what follows, let F denote an s. f. algebra on a set X. For each a € F , let us
write H(a) = a7}((1/2,1]) (“high values”), L(a) = a=1([0,1/2)) (“low values”)
and M(a) = a~1({1/2}) (“middle values”). Thus, X = H(a)U L(a) U M(a) for
each a € F. Let us now define a mapping = : [0,1)¥ — {0,1/2,1}* as follows:

0 if 2e€ L(a),
Za(z)=< 1/2 if =z € M(a),
1 if zeH@)
Write ZF = {Za : a € F}. Then ZF C {0,1/2,1}X and =F is an s. {. al-
gebra. Let us call every s. f. algebra with the latter properties a three-valued
s. f. algebra. Let us now consider the mapping = : F — ZF. It can be shown
easily that = is a homomorphism(i.e., = preserves 0, the suprema and the ortho-
complements). Though = does not have to be injective in general, we shall see
that it preserves states. We shall need some auxiliary results. (The following
two propositions were essentially obtained in [11]. Since our approach will differ
from that of [11], let us sketch their proofs. Following [7], let us define a relation
~ on F such that a ~ b iff both elements a Ab*, at A b belong to Wo(F). Thus,
a~biff (a Abt)V (at Ab) € Wo(F).)

Proposition 1.1 : Suppose that a,b € F and suppose further that s is a state
on F. Ifa~b, then s(a) = s(b).

Proof. According to Prop. 0.4, s(a Ab) = s((a Ab)V (a A bt)) = s(a). The
equality s(a A b) = s(b) derives similarly.
]

Proposition 1.2 : Let a,b be such elements in F that H(a)ANH(b)=@. Then
there are two orthogonal elements ¢,d € F such that a ~ ¢, b~dandaVvb~
cVd. Thus, for each state s on F, s(aV b) = s(a) + s(b).

Proof. Let us put ¢ = aAbL and d = at Ab. Asc < a, d < al, the elements
¢,d are orthogonal. We have a* Ac € Wy(F) and a Act = a A (atvd) =
(aAat)V(aAb) € Wo(F). So, a ~ c. Analogously, bt Ad,bAd* € Wo(F). So,
b~ d. We also obtain (aVb)A(cVd)* = (aAct AdL)V(bAct AdY) € Wa(F)
and (aVb)t A(cVd) = (at AV Ac)V(at AbEAd) € Wo(F). Thus,aVbh ~ cVvd.
According to Prop. 1.1, s(a V b) = s(c V d) = s(c) + s(d) = s(a) + s(b).

a

Proposition 1.3 : Ift is a stale on =F, then the mapping toZ is a state
on F. Conversely, each state on F can be expressed in the latter manner.

Proof. The first statement follows immediately from the fact that = is a
homomorphism. Suppose now that s is a state on F. According to Prop. 1.1,
the mapping ¢ : ZF — [0,1] determined by the formula t(Za) = s(a) is well
defined. We have t(Za V (Za)t) = ¢(Z(a V at)) = s(a V a*) = 1. It remains to



prove the property 2 of Def. 0.3. For this, let Za,Zb be orthogonal elements in
EF. Then the sets H(a), H(b), are disjoint and Prop. 1.2 yields

t(Za) +4(Zb) = s(a) + s(b) = s(a V b) = t(E(a Vb)) = t(Ea V =b).

Thus, we have proved that ¢ is a state on SF.
(m]

Let us denote by A(F) the Boolean algebra of subsets of X generated by
the collection H(F) = {H(a) : a € F}. For each a € F, the collection A(F)
contains also the sets L(a) = H(a') and M(a) = X \ (H(a) U H(at)). Thus,
the functions Za (a € F), are measurable with respect to A(F) and, as one sees
easily, A(F) is the smallest algebra on which all the functions Za are measurable.
Put A(F) = {4 € A(F) : there exists a € F such that A C M(a)}. Observe
that A(F) is an ideal in A(F) (see e.g. [14] for the notion of an ideal in a Boolean
algebra). Indeed, § = M(0) € A(F). Further, if A€ A(F)and AC B € A(F),
then A € A(F). Finally, if A,B € A(F), then there are elements a,b € F such
that 4 C M(a), B C M(b). The elements ¢ = aAat, d = bAb* satisfy M(c) =
M(a) O A and M(d) = M(b) D B. Therefore, M(cVd) = M(c)uM(d) D AUB.
Thus, AUB € A(F). Let us now denote by B(F) the factor algebra A(F)/A(F)
and by ¢ the corresponding factorization mapping.

Proposition 1.4 : The mapping o H is a homomorphism of F onto B(F).

Proof. Since p is a homomorphism and since H preserves 0, the ordering and

the suprema, it remains to prove that po H preserves the orthocomplements.
However, we have

¢(H(a)) = p(L(a)) = p(L(a) U M(a)) = p(H(a)t) = (p(H(a)))*.

So, @oH is a homomorphism and p(H(F)) = {p(H(a)) : a € F} is a sub-
algebra of B(F). As H(F) generates A(F), the collection ¢(H(F)) generates
B(F) and therefore o(H(F)) = B(F).

a

The main result of this paragraph is the following representation theorem.
Though it may formally resemble the representation obtained by Piasecki [11],
the algebra A(F) used in our attitude essentially differs from that of [11] which,
in turn, makes possible to obtain a complete characterization.

Theorem 1.5 : Let m be a finitely additive probability measure on B(F). Then
the mapping s = mopo H is a state on F. Conversely, for each state s on
F there is a unique finitely additive probability measure m on B(F) such that
s=moypoH.

Proof. The first statement follows immediately from Prop. 1.4. Suppose that
s is a state on F. According to Prop. 1.4, each element of B(F) is of the type
p(H(a)) (a € F). Let us define a mapping m : B(F) — [0,1] by the formula
m(p(H(a))) = s(a). We first have to prove that m is well defined. Suppose
that p(H(a)) = @(H(b)) for some elements a,b € F. Then we can find an
D € A(F) such that H(a)\ D = H(b)\ D and, moreover, we can also find a
d € F such that D C M(d). This yields H(a) \ M(d) = H(b) \ M(d). The



element ¢ = d Vv dt satisfies M(c) = M(d). Also, ¢ € Wi(F). We therefore
obtain H(aAc)= H(a)NH(c) = H(a)\ M(c) = H(b)\ M(c) = H(bAc), which
implies s(a) = s(aAc) = s(bAc) = s(b). We have proved that m is well defined.

Let us now prove that m is a probability measure on B(F). Trivially,
m(1) = m(p(H(1))) = s(1) = 1. It remains to verify the additivity of m. Let
¢(H(a)), p(H (b)) be orthogonal elements in B(F). Then there is a D € A(F)
such that H(a)NH(b) C D and we can find a d € F such that D C M(d). Also,
there is a ¢ € W, (F) (namely, ¢ = dV dt) such that D C M(c) (= M(d)).
We have H(a) \ M(c) = H(a) N H(c) = H(a A ¢) and similarly for b, so
H(aAc)N H(bAc) =0. Applying Prop. 1.2 to the latter collection, we obtain

m(o(H (a))) + m(e(H(b))) = s(a) + a(b) = s(a Ac) + s(bAc) =
s((ane)V(bAc))=s((aVb)Ac)=s(aVb)=m(p(H(aVb))).

Thus, m is a finitely additive probability measure on B(F). The uniqueness of
m follows immediately from Prop. 1.4.
D

For the need of the next paragraph, let us explicitly formulate the following
corollary of Th. 1.5 (see also [7]).

Corollary 1.6 : Let F be an s. f. algebra. Then S(F) always contains a two-
valued state.

2 States on the direct sum of soft fuzzy
algebras

In this paragraph we find a characterization of states on the direct sum of
s. f. algebras. We show that the states on the direct sum are exactly convex
combinations of the respective “coordinate” states. Prior to the formulation of
the characterization, let us recall the notion of the direct sum of s. f. algebras.

Definition 2.1 : Let n be a natural number. For any i (i < n), let F; be an
s. f. algebra on a set X;. Put X = |J}., X; and define the set F of all fuzzy
subsets a of X' such that a | X; € F; for alli (i <n). Then F is an s. f. algebra
on X. We shall call it the direct sum of soft fuzzy algebras F; (i < n).

Theorem 2.2 : Let n be a natural number. For each i (i < n), let F; be
an s. f. algebra on a set X; and let s; be a state on F;. Let F be the direct
sum of F; (i < n). Then for any choice of non-negative reals cy, . ..,cn with
Yoi=1 ¢ =1, the mapping s defined by the formula s(a) = Y0, cisi(a| X;) is
a state on F. Moreover, all slates on F can be expressed in the latter form.

Proof. Let us first check that the mapping s described in Th. 2.2 is a state on
F. We have, foralla € F, s(aVat) =3 asi(avat | Xi) =Y, a=1.
Let now a,b € F be orthogonal elements. For each i = 1,... ,n, the elements
a|X;, b| X; € F; are orthogonal. Hence,

n

s(ave) =" esi(avh) | X;) = Y ailsila | Xi) + (b | Xi)) =
i=1

f=1



Z cisila | X;) + Z cisi(b | Xi) = s(a) + s(b).
i=1

i=1

Thus, we have proved that s is indeed a state on F.

Conversely, suppose that p is a state on F. For each i = 1,...,n, the
characteristic function y; of the set X; belongs to F. Obviously, each a € F can
be expressed in the form a = ie1(a A xi). We see that there is a supremum
of an orthogonal sequence on the right-hand side of the latter equality . Thus,
s(a) = 3/, s(aAx;). Now, if s(x;) # 0 for an i (i < n), then the mapping
si : Fi — [0,1] defined by the formula s;(a | X;) = s(a A x;)/s(xi) (eeF)isa
state on F;. We then put ¢; = s(x;). If s(xi) = 0, we put ¢; = 0 and we take
for s; an arbitrary state on F;. We then obtain s(a) = Yoieq cisi(a | X;) for
all a € F and this completes the proof of Th. 2.2.

3 State spaces of enlargements of soft fuzzy
algebras |

In this paragraph we ask the question of whether an s. f. algebra can be enlarged
to an s. f. algebra with a preassigned state space. The question will be answered
positively (see Th. 3.1). Prior to that, let us recall that if C1,C5 are two convex
subsets of R! (I is a set), then we call C1,C; affinely homeomorphic if there
is an affine isomorphism of C} onto C, which is a topological homeomorphism
(see e.g. [1)).

Theorem 3.1 : Let F be an s. f. algebra and let B be a Boolean algebra.
Then there is an enlargement G of F such that S(G) and S(B) are affinely
homeomorphic. A corollary: F admits enlargements with arbitrary state spaces.

Proof. We may (and shall) suppose that F is an s. f. algebra on a set X
and B is a Boolean algebra of subsets of a set V. Let us denote by F 1/2 the
least set of functions on X containing F U {1/2} and being closed under the
formation of the suprema and the orthocomplements. Let us take for § the
set of all functions g : YUY — [0, 1] such that g | X € Fippand g|Y isa
characteristic function of a (crisp) set from B. It is easy to verify that G is an
s. f. algebra. (In fact, it is the direct sum of F1/2 and B.)

In order to find a s. f. subalgebra of G isomorphic to F, let us first take a
two-valued state s on F (such a state does exist — Cor. 1.6). Letnowi: F = ¢
denote the mapping determined by the following two requirements:

1. for each a € F, i(a) | X = a,
2. foreacha € F, i(a) | Y =0if s(a) = 0, i(a)|Y = 1 otherwise.

It can be verified easily that ¢ preserves 0, the orthocomplements and the
suprema. As i is obviously injective, it has to be an isomorphism of F onto
the s. f. subalgebra i(F)of G.

We have A(F) = {4 € A(F): A C X}. Hence, the Boolean algebra B(F)
(= A(F)/A(F)) is isomorphic to B. According to Th. 1.5, the state space of G

is affinely homeomorphic to S(B ). The proof is complete.
0



For the finite-dimensional state spaces we obtain the following corollary of
the latter result.

Corollary 3.2 : Let n be a natural number. Then every s. f. algebra possesses
an enlargement G such that S(G) is an n-dimensional simplez. In particular,
every s. f. algebra possesses an enlargement G such that S(G) is a singleton.

Remark 3.3 : It should be noted that an analogous question as we have dis-
cussed above has been solved for the o-additive case in [10]. It turns out that
the statement of Th. 3.1 does not allow a formal translation in the o-additive
language.

Remark 3.4 : In connection with the results of this paragraph a natural ques-
tion appears if we can enlarge s. f. algebras to s. f. algebras with preassigned
state space (as we have done here) and, at the same time, with a preassigned
Boolean algebra of crisp sets. The answer to this question is not known to the
authors for the time being.

4 Extensions of states

In this paragraph we ask if any state on F can be extended over an enlargement,
G, of F. As we have seen (Cor. 3.2), the state space S(G) can in general be
very small (in the extreme case it can be a singleton). It follows that if we want
to make our question meaningful, we have to assume that S (G) is considerably
“rich”. This property of S(G) is formally described in the following definition.

Definition 4.1 : As. f. algebra G is called rich if for any a € G\ Wo(G) there
1$ a slate s € S(G) such that s(a) = 1.

We now have the following result.

Theorem 4.2 : Let F, G be s. f. algebras and let G be an enlargement of F,
Let G be rich. Then every state s € S(F) can be extended over G.

In other words, the latter theorem asserts that if s € S(F) then there is a
t € 5(G) such that t | F = 5. In order to prove this result, we first have to
analyse the notion of a W-partition in an s. f. algebra.

Definition 4.3 : A W-partition in F is a fintle subset {ar,a2,...,ap} of F
such that H(a;)N H(a;) = @ for all i # j and such that Viziai € Wy(F).

We shall need the following auxiliary results on W-partitions.

Lemma 4.4 : Ifa € F then the pair {a,a'} is a W-partition in F. Thus,
each element in F belongs to a W-partition.

The proof is elementary.

Lemma 4.5 : Let F be an s. f algebra and let G be its rich enlargement. Let
{a1,a2,...,a,} be a W-partition in F and let s be a state on F. Then there is
a state t on G such that t(a;) = s(a;) for all i (i < n).



Proof. Observe first that Wo(F) = F N Wp(G). Let us now construct the
required state t of G. Let us assign, to any a; of the W-partition, a state
t; € S(G) in the following manner. If a; € Wy(F), then we take for ¢; an
arbitrary state of S(G) with ¢;(a;) = 1 (the existence of such t; is ensured by
the richness of G). If a; € Wy(F), then we take for t; an arbitrary state of S(G).
We then put t = Y7, s(a;)t;.

(w]

Lemma 4.6 : Suppose that P = {a1,a0,...,a,}, Q= {b1,ba,...,b;} are two
W-partitions in F. Then the collection R = {a; Abj :i < n, j < k} is also a
W-partition in F. Moreover, if s,t € S(F) and if both s,t coincide on all the
elements of R, then they coincide on all elements of both P and Q.

The proof is straightforward.

Let us now return to the proof of Th. 4.2. Suppose that we are given a state
s € S(F). We have to find the extension of s, some t € S(G). Let us denote
by W the set of all W-partitions in F. If P € W, let us denote by C(P) the
set of all states on § which coincide with s on all elements of P. According
to Lemma 4.5, for any P € W we have C(P) # 0. Moreover, for any pair
P,Q € W there is an R € W such that C(R) C C(P) N C(Q) (Lemma 4.6).
Thus, the collection C'(P) (P € W) is directed. As one sees easily, each C(P)
is obviously a closed subset of S(G). Due to the compactness of S(G), there is
a state t € 5(G) which belongs to (pcyy C(P) (see e.g. [4]). Since JW = F
(Lemma 4.4), we infer that the state ¢ coincides with s on the entire F. This
completes the proof.
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