Fuzzy Measure Defined by Pan-Integral

WANG Xizhao and HA Minghu
Mathematics Department, Hebei University, Baoding, Hebei, P.R.CHINA

Massimo in [1] discussed a type of fuzzy measure, its structural properties, corresponding fuzzy integral and convergence theorems and all of results in [1] had been generalized by H. Minghu and W.Xizhao in [2]. In this paper, we introduce a type of fuzzy measure defined by pan-integral and discuss its some structural properties.

Keywords. Fuzzy measure, pan-integral.

Throughout this paper, we make the following conventions: $R^+=[0,\infty]$, \bigvee denotes the maximum operation on R^+ , (X,F(X),P) is a fixed fuzzy measure space and M^+ denotes all of nonegative measurable functions on (X,F(X)).

Definition 1.

Let \times be a binary operation defined on R^+ with the following properties:

(1.1) a*b=b*a

(1.2) (a*b)*c=a*(b*c)

 $(1.3) (a \lor b)*c=(a*c) \lor (b*c)$

 $(1.4) a_i \langle b_i, a_j \langle b_j \Rightarrow a_i * a_j \langle b_i * b_j \rangle$

 $(1.5) a \times 0 = 0$

 $(1.6) a*b=0 \implies a=0 \text{ or } b=0$

- (1.7) there exists an unit element I in R^+ such that I*a=a*I=I
- (1.8) $\text{Lim}(a_n*b_n)=\text{Lim}a_n*\text{Lim}b_n$ when $\text{Lim}a_n$ and $\text{Lim}b_n$ exist and are finite for all a, b, c, a_n , b_n (n=1,2,....) which are in R^+ . Then, $(R^+, \vee, *)$ is called a EP-semiring.

Example. $(R^+, \bigvee, \bigwedge)$ and (R^+, \bigvee, \bullet) are all EP-semirings, their unit elements are I=+co and I=1 respectively. Where \bigwedge and \bullet are the minimum operation and multiplication operation on R^+ .

Let $(R^+, \bigvee, *)$ be a EP-semiring. The sextuple system $(R^+, \bigvee, *, X, F(X), P)$ is called a pan-space.

Definition 2.

The fuzzy measure P is called fuzzy additive if $P(E \cup F) = P(E) \cup P(F)$ for all E, $F \in F(X)$. P is called null additive if $P(E \cup F) = P(E)$ for all E, $F \in F(X)$, $E \cap F = \phi$ and P(F) = 0. P is called above autocontinuous if $P(E \cup F_n) \rightarrow P(E)$ for all $E, F_n \in F(X)$ $(n=1,2,\ldots)$, $E \cap F_n = \phi$ and $P(F_n) \rightarrow 0$ $(n \rightarrow \infty)$.

Proposition 1.

If P is fuzzy additive ,then it is null additive and above autocontinuous.

Definition 3.

Let $(R^+, \bigvee, *, X, F(X), P)$ be a pan-space, $f \in M^+$ and $E \in F(X)$. The panintegral of the function f with respect to P on E is defined by

$$\int_{E} f dP = \bigvee_{r \in [0, \infty]} (r * P(\{x : f(x) \ge r\} \cap E))$$

Proposition 2.

Let $f,g \in M^+$, $E,F \in F(X)$. Then

(1)
$$f \leqslant g \Rightarrow \int_{E} f dP \leqslant \int_{E} g dP$$

$$(1) \ f \leqslant g \Longrightarrow \int_{E} f dP \leqslant \int_{E} g dP$$

$$(2) \ E \subset F \Longrightarrow \int_{E} f dP \leqslant \int_{F} f dP$$

$$(3) \ P(E) = 0 \Longrightarrow \int_{E} f dP = 0$$

$$(4) \ \int_{E} c dP \ \rangle \ c *P(E) .$$

(3)
$$P(E)=0 \Rightarrow \int_{E} f dP = 0$$

(4)
$$\int_{\mathbf{E}} \mathbf{cdP} \geqslant \mathbf{c} * \mathbf{P}(\mathbf{E})$$

Where c is a nonegative real number.

Proof. The results can be obtained immediately by definition 3.

Theorem 1.

Let $(R^+, \bigvee, *, X, F(X), P)$ be a pan-space, $P(X) < \infty$, $f \in M^+$.

$$P_f(E) = \int_F f dP \quad E \in F(X)$$

Then P_f is also a fuzzy measure on (X,F(X)).

Proof. Let $P_r(E)=r*P(\{f\}r\})\cap E$ for every $E \in F(X)$ and $r\geqslant 0$. Then

- (1) $P_r(\phi) = r \times 0 = 0$
- (2) $A \subset B \Rightarrow P(\{f\}r\} \cap A) \leqslant P(\{f\}r\} \cap B)$ \Rightarrow r*P({f}r)(A) \langle r*P({f}r)(B) \Rightarrow $P_r(A) \langle P_r(B).$
- (3) $A_n \in F(X)$ and $A_n \subset A_{n+1}$ $(n=1,2,\ldots)$ $\Rightarrow P_r(LimA_n) = P_r(\bigcup_{n=1}^{\infty} A_n) = r*P(\bigcup_{n=1}^{\infty} (\{f\}r\} \cap A_n))$ = $r*LimP(\{f\}r\} \cap A_n) = Lim(r*P(\{f\}r\} \cap A_n)) = LimP_r(A_n)$

As $P_f = \bigvee_r P_r$, it is easy to see that $P_f(\phi) = 0$ and $A \subseteq B$ implies $P_f(A) \langle P_f(B) \rangle$.

To complete the proof, we need proving the continuity from blow and from above of the set function P_f .

In fact, if $A_n \subset A_{n+1}$ $n=1,2,\ldots$, then from (3) we have

$$P_{\mathbf{f}}(\bigcup_{n=1}^{\infty} A_{n}) = \bigvee_{\mathbf{r}} P_{\mathbf{r}}(\bigcup_{n=1}^{\infty} A_{n}) = \bigvee_{\mathbf{r}} (LimP_{\mathbf{r}}(A_{n}))$$

$$= \bigvee_{\mathbf{r}} (\bigvee_{n} P_{\mathbf{r}}(A_{n})) = \bigvee_{n} (\bigvee_{\mathbf{r}} P_{\mathbf{r}}(A_{n})) = LimP_{\mathbf{f}}(A_{n})$$

That is to say that Pf is continuous from blow. Similarly, the continuity from above can be obtained. The proof terminate.

Theorem 2.

Let $f \in M^+$, $P(X) < \infty$ and P be fuzzy additive. Then P_f is also fuzzy additive.

Proof. Let E, $F \in F(X)$, $E \cap F = \phi$ and $r \geqslant 0$.

Then
$$P_r(E \cup F) = r * P(\{f\}r) \cap (E \cup F)) = r * P((\{f\}r\} \cap E) \cup (\{f\}r\} \cap F))$$

$$= r * (P(\{f\}r\} \cap E) \vee P(\{f\}r\} \cap F))$$

$$= (r * P(\{f\}r) \cap E)) \vee (r * P(\{f\}r) \cap F))$$

$$= P_r(E) \vee P_r(F)$$

Hence $P_r(E \cup F) = \bigvee P_r(E \cup F) = \bigvee P_r(F) \vee P_r(F)$

Hence
$$P_f(E \cup F) = \bigvee_r P_r(E \cup F) = \bigvee_r (P_r(E) \vee P_r(F))$$

= $(\bigvee_r P_r(E)) \vee (\bigvee_r P_r(F)) = P_f(E) \vee P_f(F)$

and this completes the proof.

Theorem 3.

Let $f M^+$, P(X) < co and P is null-additive. Then P_f is also null-additive. Proof. Be similar to the proof of theorem 2.

Theorem 4.

Let $f \not\in M^+$, $P(X) \le \infty$ and P is above autocontinuous.Then P_f is also above autocontinuous.

Proof. Let
$$A, B_n \in F(X)$$
, $A \cap B_n = \phi \ (n=1,2,...), P(B_n) \rightarrow 0 \ (n \rightarrow \infty)$
Then $P_f(A \cup B_n) = \bigvee_r P_r(A \cup B_n) = \bigvee_r P(\{f\}r\} \cap (A \cup B_n))$
 $= \bigvee_r P((A \cap \{f\}r\}) \cup (B_n \cap \{f\}r\})$

Noticing that

 $(A \cap \{f\}r\}) \cap (B_n \cap \{f\}r\}) = \not p \ , \ P(B_n) \to 0 \ \ and \ P \ is above autocontinuous we have$

$$P((A \cap \{f\}r\}) \bigcup (B_n \cap \{f\}r\})) \rightarrow P(A \cap \{f\}r\}) \quad (n \rightarrow \infty).$$

From above arguments and P(X)<00, we obtain

$$P_f(A \cup B_n) \rightarrow P_f(A)$$
 $(n \rightarrow \infty)$ which completes the proof.

Theorem 5.

Let $\{f_n,f\}\subset M^+$, $P(X)<\infty$ and f_n converge to f on X uniformly. Then $P_{f_n}(E) \to P_f(E) \ (n\to\infty) \quad \text{for every } E \in F(X).$

References

- [1] Massimo SQUILLANTE and Aldo VENTRE, Fuzzy measure and convergence, Fuzzy Sets and Systems, 25(1988),251-257.
- [2] Minghu HA and Xizhao WANG, On the convergence of fuzzy measure, J. of Hebei University, (in Chinese) 5(1989), 79-88
- [3] D.Ralescu and G.Adams, The fuzzy integral, J.Math. Anal. Appl., 75(1980), 562-570.