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Geometric properties of the convex set of bold fuzzy
equivalence relations are studied in connection with a
problem of decomposition into convex combination of max-
min equivalence relations. Two particular combinatorial

conditions of decomposability are proposed.
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1. NOTATIONS
Y - arbitrary set; |Y| - cardinality of Y;

if Y is a subset of linear space, Y is convex hull of Y;
v
dually, if Y is a convex subset of linear space, Y denotes the

set of all extremal points of Y (non-decomposable in convex

combination of two different points in Y);

P(Y) - set of all fuzzy subsets of Y;

dim(-) - topological (linear, affine) dimension;
finite X, |X|=n - support of all fuzzy/crisp binary relations
(FRs/BRs) ;

Vs A - max-min operations; A - bold intersection;

superscript ° is used to denote crisp objects;

¢

A - linear space of all symmetric real-valued nxn matrices
with constant diagonal (Re A e (r = &r 8 r,,) ; more
, i1 1 0 | 1,1 J1
accurately, lh— for brevity, subscript n is omitted in all
designations);
¥ - set of all reflexive and symmetric FRs, considered both as
1 4]
Vs, A lattice with minimal element 0 = . Y V|, maximal ele-
0 1
1 1... 1
ment [ = + «+ « «}, and as N = —Ei%:ll— ~ dimensional affi-
1 1... 1

4

ne cube [0,I], imbedded in (N+1)-dimensional linear space A ;



’

0 ' «<— origin in &
I-}, - Hemming norm in & : IR|, = ¥ e;, (only upper triangle of
1 LEPTIREY

a matrix is used in all considerations);

pl(E,Y) = inf “E-Ru1 - Hemming distance between a relation
ReY
E € ¥ and a subset Y € ¥;

V(E,1) - l-neighborhood of E in Hemming metric, that is, inter-

section of J with Hemming sphere of radius 1, centered in
E € ¥;

¥ - crisp reflexive&symmetric relations (vertexes of ¥):
€ - set of all traditional (V—A) fuzzy equivalence relations;
B - set of all bold (Y-A) fuzzy equivalence relations;

8 = 3° - lattice of all crisp equivalence relations (partiti-
ons of X); {1j} - atoms of the lattice %°, that is, partitions
with single non-trivial equivalence class {1j} ; note that
{1ij}’'s form all closest to O vertexes of ¢ (in other words,

vertexes of V(0,1) ).

2. BASIC PROPERTIES OF %, %

"Decomposition problem” for bold equivalences was initiated by

the discovering of an inclusion % ¢ 3.
PROPOSITION O. Primary properties of ¥&°, %, 8, 3.

(1) both 8, and B are convex subsets of ¥ ;

-~ -~ .
o . . .
(11) € = 8 - any convex combination of fuzzy V—A equiva-
lence relations can be represented as convex combination of
crisp equivalences;

v v .
(111) 8 = 8 <€ 8 - crisp equivalences form all extremal points

of &, which are also extremal points -(not all!) of 3 4



PROPOSITION 1. With ns3, € = 3 g

-~

With n24, & and 3 do not coincide. So, the main problem is
(P1) Find decomposability criterion.

-~
However, since & and 3 are convex subsets of ¥, several prob-

1"

lems in the spirit of "convex analysis" can also be stated:
(P2) Investigate location of g in 3 ;
(P3) Describe all extremal points of 3 ;
(P4) Find most distant from g extremal points of 3.
We start with P2-P3 to motivate possible approach to P1.
First, let us study dimensions of g s B. Owing to inclusions
% € Bc ¥, there formally exist four variants:
(a) dim(3) < dim(3) < dim(?) ;

(b) dim(8) < dim(B) = dim(¥)

(c) dim(¥)
(d) dim(8)

dim(38) < dim(¥)
dim(3) dim(?).

”~

PROPOSITION 2. (dimension of & , 3&).
(1) variant (d) is in force; hence, % and 3 are "bodies" in %.

(11) & contains unit neighborhood of © V(0,1) = {0 U {1j}} ;

maximal cube, contained in this neighborhood, is [0,Cl (C - for

the center of simplex {{1j}}), C = !il-O + —%—-l.

(111) ¥ contains "central domain"” of 3B, i.e. a neighborhood of
the "diagonal"” {Ca=a-0+(1—a)-l}; thus, for any Cq,
V(Ca,a/Z) c 8 .

(iv}] 8 contains the whole cube [0,—%—-0 + —%—-l],

3. EXTREMAL NON-DECOMPOSABLE POINTS OF 3

Let 1 € X; consider all FRs, containing only the 1-th

nonzero row/column (except for the diagonal); say, for 1 =1

1 az..ian
E = az 1..i0

L] 00 L

«



These FRs form a (n-1)-dimensional cube, which is denoted by
s = [o,yi1g1.
]

Next, with a = {al”"’ai-l'ai+1"‘"an} € F(X\{1}), set

El(a) = yo - {1]}.

J

PROPOSITION 3 (particular family of extremal non-decomposable
points of 3).

(1) With 3 = m < n-1, centers of all m-dimensional sides of 31

1]

S Y |
C = E (—-2 xJ)

(J € X\{1}, m=|J]|28) are extremal points of B; none of
these FRs belongs to &.

J
f 1
1 o 1/2 172 ...1/2 0 ... 0
CiJ = |0 1
1/2 1 0
J 1/2 1

1}2. . ].- L[ ] .

0 0 1

6 . . * ‘1

(i1) The distance (in Hemming metric) between a center CIJ,

and the set of all decomposable bold equivalences

p,tctt 3y = B -1

1]

(111) Projection of C on 8% is not included in 31 ; it con-

tains all FRs in ¥, represented as

E =7 3011} + LA, {10k}

jel J.keld
with XJ, xjk satisfying two conditions:
Y XJ + ) ljk =1 (1)
I,k
(v 3)¢( lj + E xjk < 1/2) (2)

Extremal points of the projection of C1J on & contain two

families of FRs:



J

k 1
{ 1
1 0 1/2 0 ..1/2..0 0 ...0
o 1
k 1/2 1 4]
3 0 1
1 1/2 1
{1k} +{11} 0 1
0 0 1
0 1
(1/2 - exactly on two places in J), and
r 17 s
| ]
1 0 1/2 1/72..1/2..0 0 ...0
o 1 /2
k 172 1/2 1 0
3 1 1/2 1
s 1/2 1
0 1
{ikl}+{is}_ 0 1
2 = L[] L[] [ [ . [ . . L] L] » L] . .
0 0 1
0 1

{iv) For n=4, g‘HCIJ} exhausts all extremal points of 3, so

that CiJs represent "most non-decomposable"” bold equivalences g

Proof of (1) is based on several simple propositions.

Denote by 81 = 8n?1 ’ 81 = 8“?1, 31 = 3“?1 sets of all tra-

ditional fuzzy equivalences, convex combinations of these equi-

1

valences and bold fuzzy equivalences, contained in ¥°. Let
e d . 1 _ .
a= {al,...,al_l,a1+1,...,an} € P(X\{1}); set E (a) = Vaj {13},

Clearly, “Ei(a)ﬂl = |al,.

LEMMA 1 (characterization of &'). &' = { Elta) | Jafl;s1 ) 4

LEMMA 2 (characterization of 3!).

1

al = CEla) | (v k5,1 € XN (L » oA =000} 4



LEMMA 3. For all El(a) e ®!

only for a = (1/2,...,1/2) g

, ﬂaﬂIS—%—1supp(a)|; equality is

/
Proof of (1i), (111) is complicated, though routine.

For (1iv), straightforward search of all extremal points of 3

was done using special software tools g

4. t-TRANS-CONVEXITY

Returning to P1, one can set a question: in what terms must we
formulate decomposability criterion? We cannot expect the

"symmetric polynomial” answer: indeed,

1 1/2 1/2 1/2

cl€2,3,4}_(1/2 1 0 0
1/2 0 1 0
1/2 0 0 1

is non-decomposable, whereas

1 1/2 1/2
172 1 1/2
172 1/2 1

0 0 0

- OoOO0OOo

contains the same number of 1/2’s and is represented as
1/2-0+1/2-{123} € &.Hence, any symmetric polynomial n({eij})
does not distinguish between these two relations,

x(c1{2:3:4}) _ o1/2.041/2-1123}).

Attempting to find answer in "algebraic" style, let us charac-
terize &, and 3 in terms of t-norms. Denote by 8t set of all
V-t-equivalences, that is, reflexive, symmetric and

y-t-transitive FRs (thus, & = 8A, 3 = EA). Call a t-norm t’

t-trans-convex iff Et c 8,,. Trans-~convexity is described in a
simple way.

PROPOSITION 4. t' is t-trans-convex iff for any x, y € [0,1]2,
» € [0,11,
t (Ax+(1-2)y) < At({x)+(1-2)t(y)

or, equivalently, t’'({x,y}) < {t(x),t{(y)} (in particular, t'st) g

Clearly, if t' is itself convex, t’'({x,y}) < {t'(x),t (y)},
then, for any t2t’ (that is, for any t-norm in the interval
[t',Al), t’ is t-trans-convex. Within this approach, Lukasie-

wicz’s t-norm has one more characterization.



PROPOSITION 5. A is maximal convex t-norm g

Define a trans-convex hull of any 8t
Z(Et) = () 8t,

t’ is t-trans-convex
-~

(obviously, 8t = Z(Et)).

PROPOSITION 6. ®(%8) = 3; even more, for any t € [AAl,

This is, in fact, one more unsuccessful attempt to describe
decomposability conditions - for any collection T of t-norms, ¥
cannot be represented in the form () Et, .

t’'e€T
5. COMBINATORIAL DECOMPOSABILITY CONDITIONS

So, let us try to find more "combinatorial" conditions. Let
E € 3. Denote by Q(E) the set of all crisp equivalences, not

exceeding (that is, contained in) crisp relation E>0 :

alE) = [0,E, ;1n%°,

by B(E) - the set of all coverings of E>0 by of crisp equiva-

lences (except for the atoms {1J}), contained in Q(E):

B(E) = { £ < Q(E) | (no E'€¥ is atom) & ( VE' = Eg) }
E'ex =
With any ¥ € &(E), define FR M(¥) as "arithmetical mean" of
all CR’s in X
M(x) = Y E / |%].
E'eX
Using these notations, a necessary, and a sufficient condition

of decomposability can be formulated.
PROPOSITION 7 (a necessary condition for decomposability).
Ee€e &=% (3% ¢ €E) )(|$|("H($)"1—1) 2 ﬂEﬂl—l)

(in particular, this condition is satisfied for any E with
||E||151 ) n

PROPOSITION 8 (a sufficient condition for decomposability).

M(Z) E -
RLLIEN Pl o P Sl




M(X)

1
not necessarily FRs, since their elements may exceed 1; never-

E - .
(here, both —, and —s are real-valued relations -
1 “E“1 1

theless, inclusion & is used in the same meaning as in fuzzy

case) g

Both the PROPOSITION 7, and the PROPOSITION 8 can be written in
"a simpler fashion. However, using M(X) has certain advantages,
emphasizing the "probabilistic"” character of % - any E € g can
be considered as expected value of certain probability distri-
bution on 8. In these terms, M(ZX) is the center of the simplex

of all distributions with a given support ¥ ¢ g°,

Decomposability condition in PROPOSITION 7 is closely related to
the above example given in PROPOSITION 3. Indeed, for J < X\{i},

| T |=m23, (C“)>0 is a m-star

J

m
Clearly, Q(Ei(a)) ={ {11} | €T}, and G(Ei(a))=¢, so that
left-hand expression in the inequality, given in 7, is =zero,

which means “Ei(a)ulsl (cf. LEMMA 1).

In fact, all previous results are due to "small", or "rarefied”
FRs. Can we reduce an arbitrary bold equivalence to the rare-
fied one (with E>0 being considerably 1less than I). Define
e. = Aeij » and suppose e.>0 (e E_, = I). Obviously, if E € 3

and E>0 = I then EO = (E-e.-1)/(1-e.) € 3.

However, this subtraction doesn’t preserve decomposability

(that is, E € & must not imply E0 € 8). A simple counter-
example is for n=5, EI(Z) é —%— Yy {1jk}; thus, for i =1,

J.k

o) 1 172 1/2 172 1/2

102) _ 172 1 176 1/6 1/6

E = 1172 1/6 1 1/6 1/6]| @ 2and
172 1/6 1/6 1 1/6
1/2 1/6 1/6 1/6 1



1 2/5 2/5 2/5 2/5

E0=(E—1/6-l)/(5/6) = g;g é 2 .8 8 is non-decomposable.
2/5 O 0 1 0
2/5 0 0 0 1

There exist other possibilities - say, both E and Eo may well

be non-decomposable. For instance, let 1 € X, J ¢ X\{1}, |J|=m,
m

=2 1
€<_%:E—___ . Set C11 = (1—8)-C11+£-l. Clearly, (CéJ) = C:lJ ,
and
1J 13y, _ ) m
lc* -c. My = (Nem)oe < 5- - 1

It follows from PROPOSITION 3 (1), (i1), that none of céJ,

1J

(C.

)0 is decomposable).



