FUNDAMENTAL g-t-NORMS

Radko MESIAR, Dept. of Mathematics, Slovac Technical University, Radlinského 11, 813 68 Bratislava, Czechoslovakia

Let g be a normalized additive generator, i.e. a strictly increasing continuous mapping $g:[0,\infty] \to [0,\infty]$ with g(0)=0 and g(1)=1. g induces an order-reversing involution c on [0,1], $c(a)=g^{-1}(1-g(a))$ for $a \in [0,1]$. Thus we are able to define a fuzzy complementation A'^g for a fuzzy subset A of an universum X via $A'^g(x)=c(A(x))$ for any $x \in X$.

On the other hand, g induces a pseudo-addition \bigoplus on $[0,\infty]$ via a \bigoplus b = $g^{-1}(g(a) \bigoplus g(b))$, a,b $\in [0,\infty]$. Let T be a triangular norm. Its g-dual S^g is defined via

 $S^{g}(a,b) = c(T(c(a),c(b)))$, $a,b \in [0,1]$.

Obviously S^{g} is a t-conorm. Note that $g^{-1}(u) = g^{-1}(\min(u,g(\infty)))$.

Definition 1. T is a fundamental g-t-norm iff

- i) for any $a \in [0,1]$: T(a,a) = a or for any $a \in]0,1[$: T(a,a) < a
- ii) for any $a,b \in [0,1]$: $T(a,b) \oplus S^g(a,b) = a \oplus b$. If g(a) = a (it is enough to take g(a) = a on [0,2]), i.e. if g is identity, then g can be omitted and we get Frank's fundamental t-norm [1].

Theorem 1. Let g, h be two normalized additive generators and let T be a fundamental g-t-norm. Then

- i) k defined via k(a) = g(h(a)) for $a \in [0,\infty]$ is a normalized additive generator
- ii) T_h defined via $T_h(a,b) = h^{-1}(T(h(a),h(b)))$ for $a,b \in [0,1]$ is a fundamental k-t-norm
- iii) corresponding k-t-conorm S_h^k satisfies $S_h^k(a,b) = h^{-1}(S^g(h(a),h(b)))$ for $a,b \in [0,1]$.

Corollary 1. T is a fundamental g-t-norm iff Tg-1h is a fundamental h-t-norm.

Corollary 2. The system \mathcal{F}_g of all fundamental g-t-norms is induced by the Frank's family of fundamental t-norms $\mathcal{F} = \{T_g, s \in [0,\infty]\}$, see [1], i.e. $\mathcal{F}_g = \{T_{g,g} = (T_g)_g, s \in [0,\infty]\}$,

$$T_{s,g}(a,b) = \min (a,b) = T_0(a,b)$$
 for $s = 0$
 $= g^{-1}(g(a),g(b))$ $s = 1$
 $= \max (a \oplus b,1)$ $s = 1$
 $= g^{-1}(\log_s(1 + \frac{(s^{g(a)}-1),(s^{g(b)}-1)}{s-1}))$

s∈]0,1[U]1.∞[

for a, b [0,1].

The properties of Frank's family \mathcal{F} are preserved for the g-case, too. E.g. any g-t-norm satisfying ii) of Definition 1 is either a fundamental g-t-norm or an ordinal sum of fundamental g-t-norms. The continuity of the family $(T_{s,g})$ with respect to s holds, too. For $0 < s < r < \infty$ we have

$$T_0 \leq T_{s,g} \leq T_{r,g} \leq T_{\infty,g}$$

References

[1] Frank, M.J.: On the simultaneous associativity of F(x,y) and x + y - F(x,y). Aequationes Math. 19 (1979), 194-226.