A REPRESENTATION OF OBSERVABLES ON A TYPE I,II,III OF FUZZY QUANTUM POSET

LE BA LONG

Department of Probability and Mathematical statistics, Faculty of Mathematics and Physics, Comenius University, Mlynska dolina, CS-842 15, Bratislava, Czechoslovakia.

1. Introduction.

Let Ω be a non-void set and $M \subseteq [0;1]^{\Omega}$ such that:

- (i) if $1(\omega) = 1$ for any $\omega \in \Omega$, then $1 \in \Omega$.
- (ii) if $a \in M$, then $a^{\perp} := 1-a \in M$.
- (iii) if $1/2(\omega) = 1/2$ for any $\omega \in \Omega$, then $1/2 \notin M$.

A couple (Ω,M) is said to be a type I , type II , type III of fuzzy quantum poset (we write briefly FQP) if M is closed with respect to a union of any sequence of fuzzy sets mutually orthogonal, fuzzy orthogonal, strongly orthogonal, resp. Where a,b are orthogonal, fuzzy orthogonal , strongly orthogonal and we write a \bot b , a \bot b , a \bot b iff $a+b \le 1$, $a \cap b \le 1/2$, $a \cap b = 0$, resp. and $\bigcap_{n=1}^{\infty} a_n := \sup \{a_n : n \ge 1\}$.

If M is closed with respect to any sequence of fuzzy sets of M then (Ω,M) is said to be an F-quantum space. (See [7]).

It is obvious that an F-quantum space is an F-quantum poset every type 1,2,3, and an FQP type i is type i+1, i = 1,2 but the converse is not true, in general. (See [5]).

Recall that a mapping X from σ -algebra of Borel sets B(R) into M is said to be an observable if

- (i) $X(E^c) = X(E)^{\perp}$;
- (ii) $X(\underset{i=1}{\overset{\infty}{\cup}} E_i) = \underset{i=1}{\overset{\infty}{\cup}} X(E_i)$ for any $E, E_i \in B(R)$, i = 1, 2, ...

2. Compatibility.

Definition 1. Let (Ω,M) be a type I,II,III FQP. A non-void subset A of M is said to be a Boolean σ -algebra of (Ω,M) if:

- (i) There are the minimal and maximal elements 0_A , $1_A \in A$ such that $a \cap a^{\perp} = 0_A$, $a \cup a^{\perp} = 1_A$ for any $a \in A$.
- (ii) With respect to 0_A , 1_A , 1, \cap and \cup , A is a Boolean σ -algebra (in the sense of Sikorski [8]).

Let now, Ω be a non-void set, Φ be any subset of $[0;1]^{\Omega}$. For any $a \in \Phi$ such that $a \cup a^{\perp} \in \Phi$, we put:

$$\Phi_{a} = \{b \in \Phi; b \cup b^{\perp} = a \cup a^{\perp}\}, \tag{2.1}$$

$$\Omega_{a} = \{ \omega \in \Omega; \ a(\omega) \neq 1/2 \}, \tag{2.2}$$

$$\Omega_{\mathbf{a}}(\mathbf{b}) = \{ \omega \in \Omega_{\mathbf{a}} : \mathbf{b}(\omega) = (\mathbf{a} \cup \mathbf{a}^{\perp})(\omega) \}
= \{ \omega \in \Omega_{\mathbf{a}} : \mathbf{b}(\omega) > 1/2 \}, \text{ for any } \mathbf{b} \in \Phi_{\mathbf{a}}$$
(2.3)

$$Q_a^{\Phi}(b) = \{\Omega_a(b); b \in \Phi_a\}, \tag{2.4}$$

If A is a Boolean σ -algebra of a type I,II,III FQP (Ω,M) then A $\subseteq M$ for any $a \in A$. In the case of given FQP (Ω, M) , Q_a stand for Q_a^M .

Theorem 2. The mapping $\Omega_a(.)$: $\Phi_a \to Q_a^{\Phi}$ defined via: $b \rightarrow \Omega$ (b)

fulfills the following statements:

- (i) $\Omega(a \cup a^{\perp}) = \Omega;$
- (ii) $\Omega_{\mathbf{a}}(\mathbf{b}^{\perp}) = \Omega_{\mathbf{a}} \Omega_{\mathbf{a}}(\mathbf{b})$ for any $\mathbf{b}, \mathbf{b}^{\perp} \in \Phi_{\mathbf{c}}$;
- (iii) for any b,c $\in \Phi_a$, $\Omega_a(b) \subseteq \Omega_a(c)$ iff $b \le c$;
- (iv) for any $b, c \in \Phi_a$, but iff $\Omega_a(b) \cap \Omega_a(c) = \emptyset$; (v) if $\{b_i\}_{i=1}^{\infty} \subseteq \Phi_a$ and $\bigcup_{i=1}^{\infty} b_i \in \Phi_a$ then $\Omega_a(\bigcup_{i=1}^{\infty} b_i) = \bigcup_{i=1}^{\infty} \Omega(b_a)$.

Moreover, if (Ω,M) is a type I,II then Q_a is an q- σ -algebra and Ω_a (.) is isomorphism from M_a onto Q_a .

If (Ω, M) is a type III FQP and $a \in M$ such that $a \cup a^{\perp} \in M$ then Q needs not an q-o-algebra, in general, as we may convince on simple examples.

Corollary 3. Let (Ω,M) be a type III FQP and $a \in M$ such that $a \cup a^{\perp} \in M$. Then two following statement are equivalent:

- (i) Q_a is an q- σ -algebra.
- (ii) $\bigcup_{n=1}^{\infty} b_n \in M_a$, for any sequence $\{b_n\}_{n=1}^{\infty} \subset M_a$ such that $a_i \perp a_i$ for i≠j.

In these case Ω_a (.) is an isomorphism. Moreover, for any $a \in M$ and $A \subseteq M_a$, A is Boolean σ -algebra of M iff $\Omega_a(A)$ is a Boolean sub- σ -algebra of \mathbf{Q} .

Corollary 4. Let (Ω,M) be a type I,II FQP. Suppose A be a non-void subset of M such that $a \cap b \in A$ if $a,b \in A$, for example if $a,b \in A$ then either $a \le b$ or $b \le a$. Then there is a Boolean σ -algebra of M containing A iff A \subseteq M , a \in A and A is said to be σ -commensurable.

Corollary 5. Let (Ω, M) be a type III FQP and $a \in M$ such that at least (i) or (ii) of Corollary 3 is fulfilled. Then $A \subseteq M$ is σ -commensurable if $b \cap c \in A$ for any $b, c \in A$.

3. Representation of observables.

Theorem 6. Let X be an observable on a type I, II, III FQP (Ω, M) , and let Q be the set of all rational numbers. Denote, for any $r \in Q$,

$$B_{\chi}(r) = X((-\omega;r))$$

Then the system $\{B_{y}(r); r \in Q\}$ fulfills the following conditions:

(i)
$$B_{\chi}(s) \leq B_{\chi}(t)$$
 if $s < t$; $s,t \in Q$;

(ii)
$$U B_X(r) = a ; \bigcap_{r \in Q} B_X(r) = a^{\perp};$$

(iii)
$$U B_X(s) = B_X(r)$$
, $r \in Q$; (3.5)

(iv)
$$B_{\chi}(r) \cup B_{\chi}(r)^{\perp} = a$$
, $r \in Q$;

where a = X(R), $a^{\perp} = X(\emptyset)$.

Conversely, let { B(r) ; $r \in Q$ } be a system of fuzzy sets fulfills the conditions (i)-(iv) for some $a \in M$, where (Ω, M) is a type I,II or type III such that $\{B(r); r \in Q\}$ are σ -commensurable, then there is an unique observable X on (Ω,M) such that $B_{\chi}(r) = B(r)$ for any $r \in Q$ and X(R) = a.

It can be pointed out that the converse of the Theorem 6 is not true in the of type III FQP, in general , if system { B(r) ; $r \in Q$ } is not σ -commensurable. (See [5]).

Corollary 7. Let (Ω,M) be a type III FQP , let Q be the set of all rational numbers. $\{B(r); r \in Q\}$ is a system of fuzzy sets from M such that:

- $B(r) \leq B(s); r \langle s; r, s \in Q ;$ (i)
- (ii) U B(r) = a; $\bigcap B(r) = a^{\perp}$; U B(r) = B(s); $r,s \in Q$; $r \in Q$ $r \in Q$ $r \in Q$ $r \in Q$; (iii) $B(r) \cup B(r)^{\perp} = a$ for any $r \in Q$;
- (iv) $\bigcup_{n=1}^{\infty} b_n \in M$ for any sequence $\{b_n\}_{n=1}^{\infty} \subseteq M$ such that

$$b_n \cup b_n^{\perp} = a$$
, $b_n \le b_m^{\perp}$, $n \ne m$.

Then there is an observable X on M such that $X((-\infty;r))=B(r)$.

Theorem 8. Let (Ω,M) be a type I,II,III FQP, X be an observable on M, then there is a K(M)-measurable function $f:\Omega\to R$ such that

$${X(E) > 1/2} \subseteq f^{-1}(E) \subseteq {X(E) \ge 1/2}$$
 (3.6)

for any Borel set E.

Moreover, if g is any K(M)-measurable, real-valued function on Ω , then g fulfills (3.6) iff

$$\{\omega \in \Omega; \ f(\omega) \neq g(\omega)\} \subseteq \{X(\emptyset) = 1/2\}.$$

An example, which points out that the converse of Theorem 8 is not true for type II, in general, can be see in [4].

For any sequence $\{a_n\}_{n=1}^{\infty}$ fuzzy sets of a type I,II FQP, then there exist $1_K = \bigcap_{n=1}^{\infty} (a_n \cup a_n^{\perp}) \in M$ and $0_K = 1_K^{\perp} \in M$. But, if (Ω, M) is type II, then $a \cap l_K \cup O_K$ does not belong to M, in general, which entails the converse of Theorem 8 fails for type II, in general. However, we have a converse of Theorem 8 as following.

Theorem 9. Let (Ω,M) be a type II FQP such that

$$a_{n} \cap (\bigcup_{j=1}^{\infty} (a_{m} \cup a_{m}^{\perp})) \in M$$
(3.7)

for any $n \, \geq \, 1$ and any sequence $\left\{a_n^{}\right\}_{n=1}^{\infty}$ of M. If $f \, : \, \Omega \, \rightarrow R$ is any K(M)measurable function, then there exists an observable X of (Ω,M) · with (3.6). If Y is any observable of (Ω,M) with (3.6), then $X(E) \perp_F Y(E^c)$ for any $E \in B(R)$.

It is known that the condition (3.7) of Theorem 9 is always fulfilled in a type I of fuzzy quantum poset.

Corollary 10. Let (Ω, M) be a type III FQP such that for any sequence $\{a_n\}_{n=1}^{\infty} \subseteq M$: (i) $1_K = \bigcap_{n=1}^{\infty} (a_n \cup a_n^{\perp})$, $0_K = 1_K^{\perp} \in M$;

(i)
$$1_{\kappa} = \bigcap_{n=1}^{\infty} (a_n \cup a_n^{\perp})$$
, $0_{\kappa} = 1_{\kappa}^{\perp} \in M$;

(ii)
$$a \cap 1_{K} \cup 0_{K} \in M$$
, for any $n \ge 1$; (3.8)

(ii) $a \cap 1 \cup 0 \subset K$ $\in M$, for any $n \ge 1$; (3.8) (iii) $\bigcup_{n=1}^{\infty} b_n \in M$ for any sequence $\{b_n\}_{n=1}^{\infty} \subseteq M$ such that $b \cup b_n^{\perp} = 1 \subset K$ for $n \ge 1$ and $b \subseteq b_m^{\perp}$ for $n \ne m$.

If $f: \Omega \to R$ is an K(M)-measurable function, then there is an observable X on M with (3.6).

Note that a type III with (3.8) needs not a type II and a type II with (3.7) needs not a type I, as we can see in [5].

REFERENCES.

- [1] A. Dvurečenskij: " On a representation of observables in fuzzy measurable spaces ". J. Math. Anal. Appl. (to appear).
- [2] A.Dvurečenskij and L.B.Long: "Observables in fuzzy quantum posets". Acta Math. Univ. Comen., 1991, pp. 247-258.
- [3] A. Kolesarova: "Representation of fuzzy observables".

Proc. Sec. 1st Sch. on Meas. Theor., Lipt. Jan, Jan. 7-12, 1990, 1990.

- [4] L.B.Long: "A new approach to representation of observables on fuzzy quantum posets". Apli. mat., Praha.(Submitted)
- [5] L.B.Long: "Compatibility and representation of observables on type I,II,III of fuzzy quantum poset". (Submitted).
- [6] T.Neubrunn and B.Riečan: "Miera a integral". Veda, Bratislava, 1981, (in slovak).
- [7] B.Riečan: "A new approach to some notions of statistical quantum mechanics". BUSEFAL 35, 1988, pp. 4-6.
- [8] R.Sikorski: "Boolean algebras". Springer-Verlag, 1964.