# The Countable Additivity of Set-valued Integrals and F-valued Integrals

Deti Zhang and Zixiao Wang

Dept. Of Math. Jilin Prov. Inst. of Education Changchun, Jilin, 130022. P.R. China.

Abstract. In the paper, integrals of set-valued functions and F-valued functions are further investigated, the countable additivity of the integrals is shown.

keywords, set-valued integral, F-valued integral, countable additivity.

#### 1. Introduction

In recent years, there are a lot of works on set-valued integrals such as convexity theorem, Dorminate convergence theorem, and so on [1, 2, 3,], but there is few in the additivity. The purpose of the paper is to show that integrals of set-valued functions have the property of countable additivity, then extended it to integrals of F-valued functions.

Let  $(X, A, \mu)$  be a complete finite measure space, R' be the n-dim Euclidean space. Symbol P(R') denotes the power set of R', co K denotes the family of nonempty compact convex subsets of R'. The addition on P(R') is defined as follow:

$$\sum_{n=1}^{\infty} Bn = \{ \sum_{n=1}^{\infty} b_{n}, b_{n} \in Bn \ (n > 1), \quad \sum_{n=1}^{\infty} |b_{n}| < \infty \}$$

for  $Bn \in P(R^n)$  (n > 1). Where  $| \cdot |$  is the Euclidean norm.

Further, we define  $||A|| = Sup \{ ||a||, a \in A \}$  for  $A \in P(R')$ .

Let  $\mathcal{F}(R^n)$  be the family of all fuzzy subsets in  $R^n$ . An element  $\tilde{a} \in \mathcal{F}(R^n)$  is said to be a F-number if  $a_n = \{r \in R^n, \tilde{a}(r) \gg \lambda\} \in co \mathcal{K}$  for every  $\lambda \in (0, 1]$ , and we use  $\mathcal{F}$  to denote the set of F-numbers. Define

$$\left(\sum_{n=1}^{\infty}\tilde{r}_{n}\right)(u)=\sup\left\{\bigwedge_{n=1}^{\infty}\tilde{r}_{n}(u_{n}),u=\sum_{n=1}^{\infty}u_{n},\sum_{n=1}^{\infty}\|u_{n}\|<\infty\right\}$$

for r̃, ∈ F\*(n≥1).

A set-valued measure  $\pi$  is a countably additive mapping from to P(R')-  $\{\phi\}$ ; a F-number measure is a countably additive mapping from  $\mathcal A$  to  $\mathcal F$ , i.e

$$\pi \left( \bigcup_{n=1}^{\infty} An \right) = \sum_{n=1}^{\infty} \pi (An)$$

$$\tilde{\pi}$$
 (  $\bigcup_{n=1}^{\infty} An$ ) =  $\sum_{n=1}^{\infty} \tilde{\pi}$  (An)

for every sequence An (n≥1) of mutually disjoint elements of A, A set-valued function  $F_*X \rightarrow P(R') - \{\phi\}$  is measurable  $GrF = \{(x, \omega) \in X \times R', \omega \in F(x)\} \in A \times Borel(R') A F-Set-valued$ function  $\tilde{F}$ ,  $X \rightarrow \mathcal{H}(R') - \{\phi\}$  is measurable if its set-valued function  $F_{x}(\cdot)_{x} \rightarrow F_{x}(x) = [F(X)]_{x}$  is measurable for all  $\lambda \in (0,1]$ . A set-valued function is integrably bounded integrable function there exists an h,  $X \rightarrow R^*$ , s. t.  $|| F(x) || \le h(x)$  for all  $x \in X$ . A F-set-valued function F is called a F-valued function if it is valued in 4. A F-valued function F is integrably bounded if there exists integrable function  $h_i X \rightarrow R^*$  s.t. Sup  $|| F_i(x) || \leq h(x)$  $x \in X$ .

The integral of  $F_*X \rightarrow P(R') - \{\phi\}$  on  $A \in \mathcal{A}$  is defined as,

$$\smallint\limits_{A} Fd \; \mu = \; \{ \; \smallint\limits_{A} \; fd \; \mu \; \text{, } f \in S(F) \}$$

where  $S(F)=\{f \text{ is integrable, } f(x)\in F(X) \text{ a.e. } x\in X\}$ The integral of a F-valued function on  $A\in A$  is defined as

( 
$$\int\limits_A \widetilde{F} d\;\mu$$
 )(u)=Sup {  $\lambda \in (0,1] \; , u \in \int\limits_A F_{\lambda} d\;\mu$  }

where  $u \in R$ .

The paper is organized as follow. In section 2, we discuss the set-valued integral and obtain the theorem of countable additivity. In section 3, the integral of F-valued functions is investigated, the countable additivity is shown.

### 2. On set-valued integrals.

The main result of this section is the following theorem, and it is not mentioned by the authors in ref.,

Theorem 1. Let  $Fi_*X \rightarrow P(R') - \{\phi\}$  ( $i \ge 1$ ) be a sequence of measurable set-valued functions, let  $\phi_*X \rightarrow R^*(i \ge 1)$  be a sequence of measurable functions. If

- i)  $|| Fi_{*}(x) || \leq \phi_{*}(x)$  for all  $x \in X$ ;
- ii)  $\phi(x) = \sum_{i=1}^{\infty} \phi_i(x)$  is integrable.

Then

i) Set-valued function  $F(\cdot)_i x \rightarrow \sum_{i=1}^{\infty} F_i(x)$  is integrably bounded;

ii) 
$$S(F) = \sum_{i=1}^{\infty} S(Fi)$$
;

iii) 
$$\int \mathbf{Fd} \, \mu = \sum_{i=1}^{\infty} \int \mathbf{Fid} \, \mu$$
.

Proof. It is clear that  $||F(x)|| < \sum_{i=1}^{\infty} \varphi_i(x) = \varphi(x)$ , then i) is proved, Obviously,  $S(F) \supset \Sigma$  S(Fi), hence, to prove ii) is to verify sufficiently that  $S(F) \subset \Sigma$  S(Fi) For this aim, let  $f \in S(F)$ , we need to find a sequence  $f_i : X \rightarrow R'(i > 1)$ . s.t.  $f_i \in S(Fi)$ ,  $f(x) = \sum_{i=1}^{\infty} fi(x)$ . Now the space  $R' \times R' \cdots$  may be metrized

s. t. its topology is the usual product topology, we define a set-valued function  $x \to G(x) = \{(u_i, u_i, \cdots), u_i \in Fi(x) \ (i \ge 1)\} \subset L^i(R^i)$  (the Banach space of sequence  $\{u_i\} \subset R^i$ , and  $\|\{u_i\}\| = \sum_{i=1}^{\infty} \|u_i\| < \infty$ ), by the measurablity of  $Fi(i \ge 1)$ , it is easy to see that G is a measurable set-valued function (the definition of measurablity is same for a metric space). Further we define a continuous mapping  $H_i$   $L^i(R^i) \to R^i$ ;  $\{u_i\} \to \sum_{i=1}^{\infty} \|u_i\|_{L^i}$ , then the mapping  $x \to H^i(f(x)) = \ker H + \{f(x)/2^i\}$  is a measurable set-valued function from X to  $L^i(R^i)$ . Since the intersection of two measurable set-valued functions is also

set-valued

function

$$x \rightarrow \{f_i(x)\}, f_i(x) \in Fi(x)$$
  
 $s.t f(x) = \sum_{i=1}^{\infty} f_i(x), a.e. x \in X$ 

measurable, and  $f \in S(F)$ , then the

an a e measurable selection

Consequenty, ii) has been proved. iii) is a direct result of ii). Corollary 1. If a measurable set-valued function F is integrably bounded, then for every sequence  $\{An\}$  of mutually disjoint elements of A.

 $G(\cdot)\cap H^{-1}(\cdot)$  is nonempty measurable, therefore there exists

$$\int_{n=1}^{\infty} A_n F d \mu = \sum_{n=1}^{\infty} \int_{A_n} F d \mu$$

Proof. We first define  $a \cdot F(x) = \{a \cdot y, y \in F(x)\}$ , for  $a \in R$ . Then

$$\int Fd \mu = \int X_i(x)Fd \mu$$
, where  $X_i(x) = 0$   $x \notin A$ 

$$= 1 \quad x \in A$$

Let  $F_n(x) = X_n(x)F(x)$ ,  $\phi_n(x) = X_n(x)\phi(x)$ , it is easy to see the conditions of the theorem are satisfied, then the conclusion is held. (Q.E.D)

Corollary 2. If a measurable set-valued function F is integrably bounded, then

$$\pi(A) = \int_A Fd \mu$$

is a set-valued measure.

Corollary 3. Let  $F_{\nu}$ ,  $F_{t}$  be two integrably boundd set-valued functions,  $a,\ b\in R.$  Then

$$\int (\mathbf{a} \cdot \mathbf{F}_1 + \mathbf{b} \cdot \mathbf{F}_2) d\mu = \mathbf{a} \cdot \int \mathbf{F}_1 d\mu + \mathbf{b} \cdot \int \mathbf{F}_2 d\mu$$
.

### 3. On F-valued integrals

A F-valued function is the mapping from X to  $\mathcal{F}^*$ , the integral of F-valued functions was first given in [6], but the author didn't discuss the problem on additivity. Here we will deal with it.

Lemma 1. [4] Let  $\{\tilde{\mathbf{a}}_n\}$  be a sequence of F-numbers,  $\sum_{n=1}^{\infty}$   $\tilde{\mathbf{a}}_n$   $\in$   $\mathcal{F}^*$ , then

$$(\sum_{n=1}^{\infty} \tilde{a}_n)_x = \sum_{n=1}^{\infty} a_{n}, \qquad \lambda \in (0,1]$$

Lemma 2. [6] If  $\tilde{F}_1X \rightarrow \mathcal{T}$  is an integrably bounded and measurable F-valued function, then

$$\int \tilde{F} d\mu \in \mathcal{J}^*$$
, and  $(\int \tilde{F} d\mu)_x = \int F_x d\mu$ ,  $\lambda \in (0,1]$ 

Theorem 2. Let  $\tilde{F}n$   $(n \ge 1)$  be a sequence of measurable F-valued functions, and  $\varphi_n : X \rightarrow R'$   $(n \ge 1)$  be a sequence of measurable functions, If

i). Sup 
$$\| \operatorname{Fn}(x) \| \leq \phi_{\bullet}(x), (x \in X);$$

ii) 
$$\phi(x) = \sum_{n=1}^{\infty} \phi_n(x)$$
 is integrable;

$$= \sum_{n=1}^{\infty} \widetilde{F}_{n}^{(x)}$$
iii). The mapping  $\widetilde{F}(\cdot)_{i} \times \rightarrow \widetilde{F}(\times)_{i}$  is a F-valued function;

Then,

i) F is integrably bounded;

ii) 
$$\int \tilde{F} d\mu = \sum_{n=1}^{\infty} \int \tilde{F} n d\mu$$
.

Proof. i) It is easy to see that, for  $\lambda \in (0,1]$  by lemma 1 we have  $F_{\lambda}(x) = \sum_{n=1}^{\infty} F_{n\lambda}(x)$ , then

$$\sup_{\lambda \in \{0,1\}} \| F_{\lambda}(x) \| \leq \sum_{n=1}^{\infty} \frac{\|F_{n}(x)\|}{\|F_{n}(x)\|} \leq \sum_{n=1}^{\infty} \phi_{n}(x) = \phi(x)$$

Consequently, i) is proved,

ii) By temma 2, for  $\lambda \in (0,1]$ , we have

$$(\int \widetilde{F}(x)d\mu) = \int F_{x}(x)d\mu$$

$$= \sum_{n=1}^{\infty} \int F_n(x) d\mu \text{ (by theorem 1)}$$

$$= \sum_{n=1}^{\infty} (\int \tilde{\mathbf{F}} \mathbf{n}(\mathbf{x}) d \mu),$$

$$= (\sum_{n=1}^{\infty} \int \widehat{F}n(x) d\mu),$$

Therefore 
$$\int \tilde{F}(x) d\mu = \sum_{n=1}^{\infty} \int \tilde{F}n(x) d\mu$$
 (Q. E. D)

By the theorem, the following results can be obtained directly. Corollary 4. Let  $\tilde{F}$ ,  $X \rightarrow \mathcal{F}^*$  be an integrably bounded and measurable F-valued function, then for every sequence  $\{An\}$  of mutually disjoint elements of  $\mathcal{A}$ .

$$\int\limits_{\stackrel{\circ}{U}}\int\limits_{A_n}\widetilde{F}d\,\mu=\sum\limits_{\stackrel{\circ}{n=1}}^{\infty}\int\limits_{A_n}\widetilde{\widetilde{F}_n}(x)d\,\mu$$

Corollary 5. Let  $\tilde{F}_*X \to \mathcal{F}^*$  be an integrably bounded and

## measurable F-valued function, then

$$\boldsymbol{\tilde{\pi}}\left(\boldsymbol{A}\right)=\int_{\boldsymbol{A}}\,\boldsymbol{\tilde{F}}\boldsymbol{d}\;\boldsymbol{\mu}$$

is a F-number measure.

For a  $\in$  R\*, define a  $\cdot$   $\tilde{b}$  as (a  $\cdot$   $\tilde{b}$ ), = a  $\cdot$   $\hat{b}$ , ( $\lambda \in$  (0,1]), then Corollary 6. Let  $\tilde{F}_i$ ,  $\tilde{F}_i$ ,  $X \rightarrow \mathcal{F}^*$  be integrably bounded and measurable F-valued functions , a, b  $\in$  R. Then

 $\int (a \cdot \tilde{F}_i + b \cdot \tilde{F}_i) d\mu = a \cdot \int \tilde{F}_i d\mu + b \cdot \int \tilde{F}_i d\mu.$ 

#### References.

- [1] J. Aumann, Integrals of set-valued functions. 12(1965) 1-12.
- [2] Z. Artstein, Set-valued measures, Tran . Amer. Math. Soc. 165(1972) 103-125.
- [3] E. Klein & C. Thompson, Theory of Correspondences, Wiley-interscience, 1984.
- [4] Wenxiu Zhang. Set-valued Measures and Random Sets, Xi' an Jiaotong Univ. Press, 1989.
- [5] Wenxiu Zhang, The Basis of Fuzzy Math. ibid 1984
- [6] M. Puri & D. Ratescu, Fuzzy random variables, J. Math. Anat. Appl. 114(1986) 409-422
- [7] D. Dubois and H. Prade, Fuzzy Sets and Systems—Theory and Applications. Academic Press, New York 1980.