THE F-INTEGRAL OF F-FUNCTIONS AND R-N THEOREM OF F-NUMBER MEASURES

Li Lushu

Department of Mathematics, Huaiyin Teachers' College Jiangsu Province, P.R.China

The purpose of this paper is to define the f-integral of F-functions and investigate the relation between this F-integral and the F-number measures. The Radon-Nikodym theorem of F-number measures is also proved.

Keywords: F-function, F-number measure, F-integral, set-valued function, set-valued measure, Aumann's integral.

1. Preliminaries

Let X be a nonempty set; R^m the m-dimensional Euclidean space; $P(R^m)$, $C(R^m)$, $K(R^m)$, $CoP(R^m)$, $CoK(R^m)$ and $P(R^m)$ the family of all subsets, closed subsets, compact subsets, convex subsets, compact convex subsets and fuzzy subsets of R^m , respectively. Moreover, the classical measures mentioned in this paper are non-atomic measures.

Definition 1.1.[1] Let (X, A) be a measurable space. A set-valued mapping $T: A \to P(\mathbb{R}^m) - \{\emptyset\}$ is called a set-valued measure, if $v \{A_j\} \subseteq A$ and $A_j \cap A_j = \emptyset$ $(i \neq j) \Longrightarrow T(\bigcup_{n=1}^{m} A_n) = \sum_{n=1}^{m} T(A_n) \triangleq \{\sum_{n=1}^{m} r_n, r_n \in T(A_n), n \geqslant 1, \sum_{n=1}^{m} |r_n| < \infty \}$. If $T(A) \in K(\mathbb{R}^m)$ ($CoP(\mathbb{R}^m)$, $CoK(\mathbb{R}^m)$), $v \in A$, then T is called compact (convex, compact convex) set-valued measure.

Definition 1.2. [3] A fuzzy number on \mathbb{R}^m is a fuzzy subset $\mu \in \mathbb{F}(\mathbb{R}^m)$ with the property: $u_{\alpha} \triangleq \{r \in \mathbb{R}^m : \mu(r) \geqslant \alpha\} \subseteq CoK(\mathbb{R}^m) - \{\emptyset\}$ for $\forall \alpha \in \{0, 1]$. We denote $\mathbb{F}^*(\mathbb{R}^m)$ by the family of all fuzzy numbers on \mathbb{R}^m .

For $\mathbf{v} \ \mathbf{r} \in \mathbb{R}^m$ and $\mathbf{v} \ \mathbf{u}_n \in \mathbf{F}^*(\mathbb{R}^m)$ $(n \ge 1)$, let $(\sum_{n=1}^{\infty} \mathbf{u}_n)(\mathbf{r}) \triangleq \sup \{\inf_{n \ge 1} \mathbf{u}_n(\mathbf{r}_n): \mathbf{r} = \sum_{n=1}^{\infty} \mathbf{r}_n, \ \mathbf{r}_n \in \mathbb{R}^m, \ \sum_{n=1}^{\infty} \|\mathbf{r}_n\| < \infty.$

Definition 1.3. Let (X, A) be a measurable space. A F-valued mapping $F: A \longrightarrow F^*(\mathbb{R}^m)$ is called a F-number measure, if $V\{A_i\} \subseteq A$ and $A_i \cap A_j = \emptyset$ $(\forall i \neq j) \Longrightarrow F(\bigcap_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} F(A_n)$.

Definition 1.4. Let (X, A) be a measurable space. A set-valued function $\pi: X \longrightarrow P(\mathbb{R}^m)$ is said to be measurable, if $\pi^{-1}(\mathbb{C}) \triangleq \{x \in X: \pi(x) \cap \mathbb{C} \neq \emptyset\}$ $\in A$ for $\forall \mathbb{C} \in \mathbb{C}(\mathbb{R}^m)$.

Definition 1.5. Let (X, A, v) be a finite measure space, $\pi: X \longrightarrow P(\mathbb{R}^m)$ a set-valued function. For $\forall A \in A$, if $v(A) \neq 0$, then the Aumann's integral of π over A is defined as

(A)
$$\int_{A} \pi dv \triangleq \{ \int_{A} g dv : g \in S(\pi) \}$$

Where $S(\pi) \triangleq \{g \colon X \to \mathbb{R}^m \text{ is integrable with respect to } v, \text{ and } g(x) \in \mathfrak{N}(x)$ $v-a.e.\}$. If (A) $\int_A \pi dv \neq \emptyset$ then π is called A-integrable over A. If there exists a integrable (with respect to v) function $h \colon X \to \mathbb{R}$ such that $\| r \| \leq h(x)$ for $\forall x \in A, \forall r \in \mathfrak{N}(x)$, then π is said to be integrably bounded on A. Proposition 1.1. Let $\pi \colon X \to CoP(\mathbb{R}^m) \cap C(\mathbb{R}^m)$ be a closed convex measurable set-valued function. If π is integrably bounded with respect to a finite measure v, then (A) $\int_A \pi dv \in CoK(\mathbb{R}^m) - \{\emptyset\}$, $A \in A$.

2. F-measurable F-functions and F-integrals

Let $f: X \longrightarrow F(\mathbb{R}^m)$ be a F-function. For $\forall \alpha \in (0, 1]$, let $f_{\alpha}(x) \triangleq \{f(x)\}_{\alpha}$ = $\{r \in \mathbb{R}^m : \{f(x)\}(r) \geqslant \alpha\}$, $\forall x \in X$; $\{f^{-1}(u)\}_{\alpha} = f_{\alpha}^{-1}(u_{\alpha}) \triangleq \{x \in X : f_{\alpha}(x) \cap u_{\alpha} \neq \emptyset\}$, $\forall u \in F(\mathbb{R}^m)$. Then $f_{\alpha}: X \longrightarrow P(\mathbb{R}^m)$ is a set-vaued function, and $f^{-1}: F(\mathbb{R}^m)$ $\longrightarrow F(X)$. Where $f^{-1}(u) = U_{\alpha \in (0,1]} \alpha \cdot [f^{-1}(u)]_{\alpha}$ and F(X) is the family of all fuzzy subsets of X.

Definition 2.1. Let A be a σ -algebra on X and B_m the Borel algebra on R^m . A F-function $f: X \longrightarrow F(R^m)$ is said to be F-measurable, if $f^{-1}(\widetilde{B_m}) \subseteq \widetilde{A}$.

Where $\widetilde{\mathbf{A}} \triangleq \{\mu \in \mathbf{F}(X) : \mu^{-1}(\mathbf{B}_{\parallel} \cap [0,1]) \subseteq \mathbf{A}\}$ and $\widetilde{\mathbf{B}}_{\underline{m}} \triangleq \{\mu \in \mathbf{F}(\mathbb{R}^{\underline{m}}) : \mu^{-1}(\mathbf{B}_{\parallel} \cap [0,1]) \subseteq \mathbf{B}_{\underline{m}}\}$ are the fuzzy 0-algebras induced from \mathbf{A} and $\mathbf{B}_{\underline{m}}$, respectively, in the sense of [5],[6].

Theorem 2.1. A F-function $f: X \longrightarrow \mathbf{P}(\mathbb{R}^m)$ is F-measurable iff the set-valued function $f_\alpha: X \longrightarrow \mathbf{P}(\mathbb{R}^m)$ is measurable, $\mathbf{v} \in (0, 1]$.

Proof. Suppose f is F-measurable, then $f^{-1}(\widetilde{B}_{m}) \subseteq \widetilde{A}$. For $\mathbf{v} \in \mathbb{C}(\mathbb{R}^{m})$, we have $\mathbb{C} \subseteq \mathbf{B}_{m}$ and $\mathbb{I}_{\mathbb{C}} \in \widetilde{\mathbf{B}}_{m}$. Thus $f^{-1}(\mathbb{I}_{\mathbb{C}}) \in \widetilde{\mathbf{A}}$, and consequently, $[f^{-1}(\mathbb{I}_{\mathbb{C}})]_{\alpha} = \{x \in \mathbb{X}: f_{\alpha}(x) \cap \mathbb{C} \neq \emptyset\} \in A$. Hence f_{α} is measurable, $\mathbf{v} \propto \in (0, 1]$.

Conversely, suppose f is measurable. Then $\mu_{\alpha} \in \mathbb{B}_{m}$ for $\mathbf{v} \ \mu \in \widetilde{\mathbf{B}}_{m}$, and consequently, μ_{α} is the countable intersections or unious or complements of elements in $\mathbf{C}(\mathbb{R}^{m})$. Since \mathbf{A} is a \mathbf{G} -algebra on \mathbf{X} , we have $[\mathbf{f}^{-1}(\mu)]_{\alpha} = \mathbf{f}_{\alpha}^{-1}(\mu_{\alpha}) = \{\mathbf{x} \in \mathbf{X}: \mathbf{f}_{\alpha}(\mathbf{x}) \cap \mu_{\alpha} \neq \emptyset\} \in \mathbf{A} \text{ and } \mathbf{f}^{-1}(\mu) = \mathbf{U}_{\mathbf{d} \in (0,1]} \cap (\mathbf{f}^{-1}(\mathbf{u}))_{\alpha} \in \widetilde{\mathbf{A}}$. Hence $\mathbf{f}^{-1}(\widetilde{\mathbf{B}}_{m}) \in \widetilde{\mathbf{A}}$. This means that f is F-measurable. The proof is finished.

Definition 2.2. Let (X, A, v) be a finite measure space, $f: X \longrightarrow F(\mathbb{R}^m)$ a F-function. For $v A \in A$, if $v(A) \geq 0$, the F-integral of f over A is a fuzzy subsets $(F) \int_A f dv \in F(\mathbb{R}^m)$ defined by

 $((F) \int_{A} f dv)(r) = \sup \{\alpha : r \in (A) \int_{A} f \alpha dv, \alpha \in [0, 1]\} \quad \forall r \in \mathbb{R}^{m}.$

Since $r \in (A)$ $\int_A f_0 dv = (A) \int_A R^m dv$ for $v r \in R^m$, and $(A) \int_A f_B dv \subseteq (F) \int_A f_{\alpha} dv$ for $v A \in A$ and $v 0 \le \alpha \le \beta \le 1$, we know that $(F) \int_A f dv$ is well defined.

Theorem 2.2. $((F) \int_A f dv)_{\alpha} = \bigcap_{\beta < \alpha} ((A) \int_A f_{\beta} dv) = (A) \int_A f_{\alpha} dv$, $\forall \alpha \in (0, 1]$ Proof. Straightforward.

Theorem 2.3. Suppose $f: X \longrightarrow F^*(\mathbb{R}^m)$ is F-measurable and f_{α} is integrably bounded on A for $\mathbf{v} \propto \in (0, 1]$. Then $(F) \int_{A} f d\mathbf{v} \in F^*(\mathbb{R}^m)$, $A \in A$.

Proof. By theorem 2.1, we know that $f: X \longrightarrow CoK(\mathbb{R}^m) - \{\emptyset\}$ is measurable for $v \in (0, 1]$. Therefore it follows from proposition 1.1 and theorem 2.2 that $((F) \int_{\mathbb{A}} f dv)_{\infty} = (A) \int_{\mathbb{A}} f_{\infty} dv \in CoK(\mathbb{R}^m) - \{\emptyset\}$. Hence $(F) \int_{\mathbb{A}} f dv \in \mathbb{F}^*(\mathbb{R}^m)$, $A \in \mathbb{A}$.

Definition 23. A F-function f: $X \to \mathbf{F}(\mathbb{R}^m)$ is said to be bounded on A $(A \subseteq X)$, if $U_{\mathbf{x} \in A} \operatorname{supp} f(\mathbf{x}) = U_{\mathbf{x} \in A} \{ \mathbf{r} \in \mathbb{R}^m, (f(\mathbf{x}))(\mathbf{r}) > 0 \}$ is bounded on \mathbb{R}^m .

Theorem 2.4. Let (X, A, v) be a finite measure space and $f: X \longrightarrow F(\mathbb{R}^m)$ a bounded convex F-function. If f_{α} is closed and A-integrable on A, then the F-valued mapping $F: A \longrightarrow F(\mathbb{R}^m)$ defined by

$$F(A) = (F) \int_A f dv, A \in A$$

is a F-number measure on (X, A).

Proof. For $\forall \alpha \in (0, 1]$, let $\prod_{\alpha}(A) = (A) \int_{A} f \, dv \, (A \in A)$. Then \prod_{α} is a set-valued measure on $(X, A)^{[1]}$, and \prod_{α} is bounded convex. We proceed to prove that $\prod_{\alpha}(A)$ is compact for $\forall A \in A$. In fact, suppose $r_n = \int_{A} g_n dv$ $(g_n \in S(f))$, $n \geqslant 1$, and $r_n \rightarrow r$. Then (cf.[2]) there exists a subsequence $\{g_{nk}\}$ of $\{g_n\}$ and a subsequence $\{h_{nk}\}$ of $\{h_{nk}\}$, such that $h_{nk} = f_n = f_n$

Moreover, $\Pi_{\alpha}(A) \subseteq \Pi_{\alpha}(A)$ whenever $0 \le \alpha \le \beta \le 1$. Hence $F(A)(r) = ((\hat{r}) \int_{A} f dv)$ $(r) = \sup \{\alpha : r \in \Pi_{\alpha}(A)\}$ is a F-number measure on $(X, A)^{\lceil 3 \rceil}$.

3. Radon-Nikodym Theorem of F-number Measures

Definition 3.1. Let (X, A, v) be a finite measure space, $F: A \longrightarrow F^*(\mathbb{R}^m)$ a fuzzy number measure on (X, A). If there exists a F-function $f: X \longrightarrow F(\mathbb{R}^m)$ such that $F(A) = \int_A f dv$ $(v A \in A)$, then we call f the Radon-Nikodym derivative of F with respect to v.

Definition 3.2. Let (X, A, v) be a finite measure space, $\mathcal{T}(F)$ a setvalued (F-number) measure on (X, A). $\mathcal{T}(F)$ is said to be absolutely

continuous with respect to v, written as $\pi \ll v$ ($F \ll v$), if $v \land A \in A$, v(A) = 0 $\longrightarrow \Pi(A) = \{0\}(F(A) = 1_{\{0\}})$.

Theorem 3.1. Let (X, A, v) be a finite measure space and F a F-number measure on (X, A). If $F \ll v$, then there exists a F-measurable R-N derivative of F.

Proof. For $\mathbf{v} \propto \in (0, 1]$, $\mathbf{T}_{\mathbf{v}}(A) \triangleq \{\mathbf{r} \in \mathbf{R}^m \colon \mathbf{F}(A)(\mathbf{r}) \geqslant \alpha\}$, $(\mathbf{A} \in \mathbf{A})$, is a compact convex set-valued measure [3]. $\mathbf{F} \ll \mathbf{v}$ means that if $\mathbf{v}(A) = 0$ then $\mathbf{F}(A) = \mathbf{1}_{\{0\}}$. Thus $\mathbf{T}_{\mathbf{v}}(A) = \{\mathbf{r} \in \mathbf{R}^m \colon \mathbf{F}(A)(\mathbf{r}) \geqslant \alpha\} = \{0\}$, i.e. $\mathbf{T}_{\mathbf{v}} \ll \mathbf{v}$. Hence [2] there exists a F-measurable compact convex set-valued function $\mathbf{T}_{\mathbf{v}}$ such that $\mathbf{T}_{\mathbf{v}}(A) = (A) \int_{A} \mathbf{T}_{\mathbf{v}} d\mathbf{v}$ $(\mathbf{A} \in \mathbf{A})$ and $\mathbf{T}_{\mathbf{v}}(\mathbf{x}) \subseteq \mathbf{T}_{\mathbf{b}}(\mathbf{x})$ whenever $0 < \alpha < \beta < 1$. Let $\mathbf{f} = \mathbf{U}_{\mathbf{O} \in (0,1]} \propto \mathbf{T}_{\mathbf{v}}$, then $\mathbf{f} \colon \mathbf{X} \longrightarrow \mathbf{F}^*(\mathbf{R}^m)$ is F-measurable and $\mathbf{F}(A)(\mathbf{r}) = \sup \{\alpha \colon \mathbf{r} \in \mathbf{T}_{\mathbf{o}}(A)\} = \sup \{\alpha \colon \mathbf{r} \in (A) \int_{A} \mathbf{T}_{\mathbf{v}} d\mathbf{v} = ((\mathbf{F}) \int_{A} \mathbf{f} d\mathbf{v})(\mathbf{r}), \quad \mathbf{v} \in \mathbf{R}^m.$ i.e. $\mathbf{F}(A) = (\mathbf{F}) \int_{A} \mathbf{f} d\mathbf{v}, \quad \mathbf{v} \in \mathbf{A}$. Therefore \mathbf{f} is a F-measurable R-N derivative of \mathbf{F} . We finish the proof of theorem 3.1.

References:

- [1]. Z.V. Artstein, Trans. Amer. Math. Soc. 165(1972) 103-125.
- [2]. R.J. Aumann, J. Math. Anal. Appl. 12(1965) 1-12.
- [3]. Zhang Wenxiu, Kexue Tongbao 23 (1986) pp.1833.
- [4]. Zhang Wenxiu, J. Xi'an Jiaotong University 13(1986) 1-9.
- [5]. E.P. Klement, Fuzzy Sets and Systems 4(1980) 83-93.
- [6]. Song Fengxi, Fuzzy Systems and Mathematics, vol.2 No.2 (1988) 77-82.
- [7]. Hou Renen, Fuzzy Systems and Mathematics, vol.3 No.1 (1989) 10-19.
- [8]. Wang Wenping, J. Sichuan Normal University 1(1990) 103-106.