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The purpose of this paper is to define the f-intégral of F-functions
and investigate the relation between this F-integral and the F-number
measures. The Radon-Nikodym theorem of F-number measures is also proved.

Keywords: F-function, F-number measure, F-integral, set-valued func-
tion, set-valued measure, Aumann's integral.

1. Preliminaries

Let X be a nonempty set; R™ the m-dimensional Euclidean space; P(R®),
e(#), K(F®), CoP(E®), CoK(RK®) and P(R®) the family of all subsets, closed
subsets, compact subsets, convex subsets, compact convex subsets and fuzzy
'subsets of Rm, resipectively. Moreover, the classical measures mentioned

in this paper are non-atomic measures.

Definition 1.1, ('] Let (X, A) be a measurable space. A set-valued mapping

T : A—P(R")-{#} is called a set-valued measure, if v {A}=A end
APA=0 (12)) =TT A,) = £ 1) 2 {Eyry, 1, €TT(AY), 031, Hillr e},
1f TT¢A) € K(R®) ( CoP(Rm), CoK(Rm) )s v A€A, then<TT is called compact

(convex, compact convex) set—valued measure.

Definition 1. 2.[3] A f\mzy number on KE is a fuzzy suoset m € B(R™) with
the property {reRm ulr) > clf}CI-'CoK(Rm) {#} for v €O, 1] We
denote F*(R™) by thes family of all fuzzy numbers on K.

For v r €R® and v uner*(nm) (nz1), let (gun)(r,) 2 sup {3;2—1: a (r ):

™= 3=ATnr T € B aaill 7 ll<2-



Definition 1.357Let (X, A) be a measurable space. A F-valued mapping
F: A—>F*(R") 1is called a F-number measure, if v{Ai}CL and AinAj g

(v 1)) =>F( U A) = ﬁF(A )e

Definition 1. .543 Let (X, A) be a measurable space. A set-valued function

g¢: X — P(R®) is said to be measursble, if TC- (C) 2 {xeX: T(xINC + %}
€A for VCEC(RY).

Definition 1.5+27

let (X, A, v) be a finite measure space, Jt! X—*B(R’P) ,
a set-valued function. For v A€A, if v(A)x0, then the Aumann's integral

of Tz over A is defined as

(4) SATC’d;r = {JAgdv: gesm}

Where S() 2 {g: X—R® is integrable with respect to v, and g(x)e€(x) -
v-a.e.} . If (4) JA’)‘Cdv 5 ¢ then 4ris called A-integrable over A. If there
exists a integrable (with respect to v) function h: X —R such that firil <
n(x) for v x €A, vremix), then 1cis said to be integrably boundéd on A.

Proposition 1. 1521 1ot v X —>CoP(RBNC(R®) be a closed convex measurable
set-valued function. If 9 is integrably bounded with respect to a finite
measure v, then (A) JA’TCdv €Cok(R®)-{pl , xea. '

2+ F-measurable F-functions and PF-integrals

. Let £: X — F(R®) be a F-function. For vae(o’, 1], lét fo(x) 2 [f(x);l,,l

= {re®® 2Nz}, vrex; 7 (W], = £ (u) 2 {xeX: La(x)uo> 03,
v u €F(F®). Then fy: X —>P(E%) is a set-vaued function, and £ ': P(E)
—B(X). ¥mere 7' (w) = Uy 4% (27 (W))y and B(X) s the family of
all fuzzy subsets of X. '
Definition 2.1. Let A be a g—algebra on X and B the Borel aigéhrarén' B

<1, ~ o~
A F-function f: X —F(R®) 1s said to be P-measurable, if £~ (B )X .



Where A 2 {n e F(X): n7) (B|ﬂ(0,1])_CEA} and ’ﬁ;‘ 2 {neP(R"): )1-1 (8,n(0,11)
&B } are the fuzzy g-algebras induced from 4 and B , respectively, in the
sense of [5],[6]. |

Theorem 2.1. A F-function f: X —P(R®) is F-measurable iff the set-
valued function fy: X —>P(R®) is measurable, v o€(0, 11.

_1 o~ o~

Proof. Suppose f is F-measurable, then f (Bm).C_:.A. For v C €C(R®), we have
C=B and 1063;1. Thus f‘1‘(1c) €X, and consequently, [f‘1(1c)]d= {xeX:
La (N1 ox P} = {z€X: £4(x)NC x F} €A. Hence fy is measurable, va€(0, 1].

Conversely, suppose f is measurable. Then 'pueBm for v pe'ﬁ;, end conse-
quently, us is the countable intersections or unious or complements of
elements in C(R®). Since A is a g-algebra on X, we have (£~ (n)], = £ (na)
_ . -1 _ e o -1,%
= {x€X: £,(x)Np. = $}€A and £7 (n) = Ude(o’”d[f (u)), € A. Hence £ (Bm)
g'f. This means that £ is F-measurable. The proof is finished.

Definition 2.2. Let (X, A, v) be a finite measure space, £: X—>P(R®) a
F-function. For v A €A, if v(A) % O, the F-integral of f over A is a fuzzy
subsets (F) J,fdv € P(R®) defined by

((F) §y2av)(r) = suplat: r €(4) ffudv, atefo, 11} v r e
Since r € (4) SAfo.-dv = (4) JARmdv for v r €éR®, and (&) JAdevS;(F) J.Af#dv

for v A€A and v 0<0l<fs1, we know that (F) J,fdv is well defined.
Theorem 2.2. ((F) J,fav)y = QLW Jgeav) = () Jytaav . v aelo, 1]
Proof:; “Straightforvard™.
Theorem 2.3. Suppose f: X —>F*(R®) is F-measurable and £ is izitegz;abiy
bounded on A for v ®€(0, 11. Then (F) J,fdv € P*(F"), A€A.
Proof. By theorem 2.1, we know that £ : X —>CoK(R")-{#}is measurable for
v o &(0, 1]. Therefore it follows from proposition 1.1 and theorem 2.2

that((F) JAfdv)“ = (A) JAfudv € Cok(R™)-{0}. Hence (F) jAfdv eg*(gm) ’ .,j'f‘f;‘f:.



Definition 2.3, A F-function £: X — F(R") is said to be bounded on A
(AsX), if U_, suppf(x) = U__{r €R", (£(x))(r) >0} is bounded on R".

Theorem 2.4. Let (X, A, v) be a finite measure space and f: X —>PF(R®) a
bounded convex F-function. If fo is closed and A-integrable on A, then

the F-valued mapping F: A —>P(R®) defined by
F(A) = (F) §,fav, aea
is a F-number measure on (X, A).

Proof. For v A€(0, 1], let TR(4) = () [,z dv (A€A). Then [, is a set-
valued measure on (X, A)m], and TT« is bounded convex. We proceed to
prove that T'(;(A_) is compact for v A €A. In fact, suppose r, = JAgI'ldv
(g, € s(f )), n»1, and r —>r. Then (cf.[2]) there exists a subsequence

W
{8} of {g } and a subsequence {nnk;, of {n .}, such that g —>g and

h , —>»g v-a.e. Where {hnk} is the convex combination sequence of {gnk}.

nk
it ‘
Since f is closed convex, we get that hnke fx v-a.e, consequently, g €f«
v-a.e. and [ gdv =vi_135£ SV = limit r = r. Thus re(A)J'Af.,dv. This
means that (A) JAfudvéK(Rm) is compact. Therefore ‘T, is a bounded com-

pact convex set-valued measure.

Moreover, TF@(A)ETT:(A) whenever 0 < 3¢1. Hence F(A)(r) = ((F)jAfdv)

(r) = sup{ol: r éT\';(A)} is a Fnumber measure on (X, A)[°1,

3. Radon-Nikodym Theorem of F-number Measures

Definition 3.1. Let (X, A, v) be a finite measure space, F: A —>F*(R®) a
fuzzy number measure on (X, A). If there exists a F-function f:X — P(R®)
such that F(A) = jAfdv (v A€A), then we call £ the Radon-Nikodym deri-

vative of F with respect to v.

Definition 3.2. Let (X, A, v) be a finite measure space, JL( F ) a set-

valued (F-number) measure on (X, 4). TC( F ) 1is said to be absolutely ‘



continuous with respect to v, written as Jr«v (F&v), if v A€, v(A) =0
—==3T(A) = {o}( 7(a) = 140y)*

Theorem 3.1. Let (X, A, v) be a finite measure space and F a F-number mea-
sure on (X, A). If F&v, then therekexists a F-measurable R-N derivative
of F.

Proof. For v «€(0, 1], TL{A) 2 {r € R%: F(A)(r)?d}, (A€A),is a compact
convex set-valued measure’>). F&v means that if v(A) = O then F(A) = 1{0}
Thus TI{A) = {r €R": FA)(r)Za} = {0}, i.e. Tr& V. Hence "2 there
exists a F-measurable compact convex.set-valued function -TY,such that
TA) = (A) J,Tgav (A€A) and Tg(x) STp(x) whenever 0<ot <@<1. Iet
£ = Uae(o’ﬂOl.'Tt;, then f: X —>FP*(R®) is F-measurable and F(A)(r)' = sup
{oe : reT(A)} = sup{at: r€(a) JAMdv = ((F) JAfdv)(r), v r €R%.
i.e. F(a) = (F) jAfdv , v A €A, Therefore f is a F-measurable R-N deriva-

tive of F. We finish the proof of theorem 3.1.
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